Gliadins are stored in plant seeds,such as gliadins in wheat and corn.Zein has good film forming,oil retention,water retention,stability,thermal plasticity,oxidation resistance and biodegradability,and zein can be dis...Gliadins are stored in plant seeds,such as gliadins in wheat and corn.Zein has good film forming,oil retention,water retention,stability,thermal plasticity,oxidation resistance and biodegradability,and zein can be dissolved in ethanol solution.These functional properties make zein have a wide application prospect in food,medicine,textile,environmental protection and other fields.This paper briefly introduces the source,structure and amino acid composition of zein,focuses on the extraction technology of zein,summarizes the functional properties of zein,and analyzes the modification methods of zein.In the long run,summarizing the functional characteristics of zein has a certain reference value for its application in the future and large-scale production.展开更多
Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally...Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.展开更多
Taxifolin loaded zein-caseinate nanoparticles(TZP)were fabricated by the anti-solvent method and were used as an oral delivery vehicle to improve their bioavailability in the rat.The formulations of TZP were optimized...Taxifolin loaded zein-caseinate nanoparticles(TZP)were fabricated by the anti-solvent method and were used as an oral delivery vehicle to improve their bioavailability in the rat.The formulations of TZP were optimized.With mass ratio of 1:1:2 between taxifolin,zein and sodium caseinate,the particle size andζpotential of TZP were(168.74±0.35)nm and−(57.67±0.25)mV,while the encapsulation and loading efficiency of taxifolin were(85.83±0.89)%and(17.11±0.88)%,respectively.After freeze-drying,TZP exhibited excellent redispersibility in water without aggregation.Physicochemical characterization showed that taxifolin existed in amorphous form in TZP and its interaction with the protein was observed.After encapsulating in TZP,the excellent dispersion of taxifolin in water signifi cantly improve its diffusion velocity through a semipermeable membrane.After oral administration,taxifolin and its 5 metabolites were identifi ed in rat plasma by ultra high performance liquid chromatography(UPLC)with quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS).The dynamic variation of taxifolin and its metabolites in plasma were then quantifi ed by UPLC with a triple-quadrupole typemass spectroscopy(UPLC-QqQ-MS/MS).A pharmacokinetic study showed that the bioavailability of taxifolin increased from 0.35%to 0.52%through TZP fabrication.The plasma concentration of taxifolin glucuronide and methylated taxifolin glucuronide was much higher than taxifolin.Glucuronidation was the dominating metabolism pathway of taxifolin in vivo.展开更多
To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompat...To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.展开更多
The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained...The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.展开更多
Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan ...Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased.展开更多
Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemic...Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution, hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P〉0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.展开更多
This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to ...This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to Wister rats by intragastric gavage. The assay of blood ethanol was conducted by using the enzyme based assay kit. The amino acid analysis was made with an amino acid analyzer. The data of the animal experiments showed that LMCPs could accelerate the metabolism of alcohol in rats. In the control group, the blood ethanol concentration reached the maximum level of (827.0±77.3) mg/L after ethanol loading for 30 min, then gradually decreased. In contrast, the blood ethanol concentration only reached (527.25±47.0) mg/L after 30 min in the group of LMCPs taken. These results indicate that LMCPs could decrease ethanol concentration in blood rapidly.展开更多
Aim Tissue engineering is a promising area with a broad range of applications in the fields of regenerative medicine and human health. The emergence of periodontal tissue engineering for clinical treatment of periodon...Aim Tissue engineering is a promising area with a broad range of applications in the fields of regenerative medicine and human health. The emergence of periodontal tissue engineering for clinical treatment of periodontal disease has opened a new therapeutic avenue. The choice of scaffold is crucial. This study was conducted to prepare zein scaffold and explore the suitability of zein and Shuanghuangbu for periodontal tissue engineering.Methodology A zein scaffold was made using the solvent casting/particulate leaching method with sodium chloride (NaC1) particles as the porogen. The physical properties of the zein scaffold were evaluated by observing its shape and determining its pore structure and porosity. Cytotoxicity testing of the scaffold was carried out via in vitro cell culture experiments, including a liquid extraction experi- ment and the direct contact assay. Also, the Chinese medicine Shuanghuangbu, as a growth factor, was diluted by scaffold extract into different concentrations. This Shuanghuangbu-scaffold extract was then added to periodontal ligament cells (PDLCs) in order to determineits effect on cell proliferation. Results The zein scaffold displayed a sponge-like structure with a high porosity and sufficient thickness. The porosity and pore size of the zein scaffold can be controlled by changing the porogen particles dosage and size. The porosity was up to 64.1%-78.0%. The pores were well-distributed, interconnected, and porous. The toxicity of the zein scaffold was graded as 0-1. Furthermore, PDLCs displayed full stretching and vigorous growth under scanning electronic microscope (SEM). Shuanghuangbu-scaffold extract could reinforce proliferation activity of PDLCs compared to the control group, especially at 100 μg.mL^-1 (P〈0.01). Conclusion A zein scaffold with high porosity, open pore wall structure, and good biocompatibility is conducive to the growth of PDLCs. Zein could be used as scaffold to repair periodontal tissue defects. Also, Shuanghuangbuscaffold extract can enhance the proliferation activity of PDLCs. Altogether, these findings provide the basis for in vivo testing on animals.展开更多
Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a pro...Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.展开更多
Zein,a class of alcohol-soluble prolamines in maize endosperm,is mainly composed of α-zein,β-zein,andγ-zein.It has been recognized as a structural protein for various gluten-free systems since it can form glutenlik...Zein,a class of alcohol-soluble prolamines in maize endosperm,is mainly composed of α-zein,β-zein,andγ-zein.It has been recognized as a structural protein for various gluten-free systems since it can form glutenlike viscoelastic network.The formation of viscoelastic zein network can make up for the structural defect of gluten-free doughs caused by the lack of gluten.To make the most of structural functionality of zein in glutenfree foods,it is important to clearly elucidate the fundamental properties of zein network.In this article,these properties have been discussed,analyzed and summarized from the relationship between protein network and structural functionality of zein,the feature and formation mechanism of zein network,factors affecting zein network and the applications of zein network in improving the quality of gluten-free food.In addition,this article also looks forward to potential research areas on zein network.展开更多
Cellulose microfibril (CMF) was the extraction with acid mixture from peel of Musa sapientum Linn type of banana (Kluai Nam Wa). The fibrous-shape of CMF interconnected weblike structure with the average diameter 26 n...Cellulose microfibril (CMF) was the extraction with acid mixture from peel of Musa sapientum Linn type of banana (Kluai Nam Wa). The fibrous-shape of CMF interconnected weblike structure with the average diameter 26 nm were observed by TEM. In order to prepare zein/CMF nanocomposite films, 16% wt zein solution was prepared by dissolved in 80% ethanol aqueous solution which contain glycerol 20% w/w. The suspension of CMF and zein solution was mixed with 0% - 5% weight fractions of solid CMF in zein matrix. The morphology of the zein films is more roughness by increased amount of cellulose microfibrils. It was found that as CMF content increase from 0 to 5% wt results in increasing tensile strength and Young’s modulus of zein nanocomposite films. The highest strength obtains at 4% wt CMF.展开更多
Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties ...Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties and release properties of developed zein films were investigated in detail. The results of microstructure characterization indicated that zein-based films became compact and smooth, and LY aggregates were well distributed in the zein matrix because of the simultaneous addition of LY and AA. The results of mechanical tests showed that because of the synergistic effects of LY and AA on zein film, elongation at break of zein-based film could be up to 138%, which was 34.5 times higher than that of zein control film. LY release tests showed that when the concentration of AA was less than 3.1 mg·cm^(-2), the release rate of LY significantly decreased by 33.7%, and the total release increased by 80.6%. While the release profiles of AA showed that the release rate and total release of AA from the films containing LY increased by approximately 68.9% and 61.7% than the films without LY. Good antioxidant and sustained antimicrobial activities were found for the developed zein films.展开更多
文摘Gliadins are stored in plant seeds,such as gliadins in wheat and corn.Zein has good film forming,oil retention,water retention,stability,thermal plasticity,oxidation resistance and biodegradability,and zein can be dissolved in ethanol solution.These functional properties make zein have a wide application prospect in food,medicine,textile,environmental protection and other fields.This paper briefly introduces the source,structure and amino acid composition of zein,focuses on the extraction technology of zein,summarizes the functional properties of zein,and analyzes the modification methods of zein.In the long run,summarizing the functional characteristics of zein has a certain reference value for its application in the future and large-scale production.
文摘Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.
基金supported by the National Natural Science Foundation of China(32060541).
文摘Taxifolin loaded zein-caseinate nanoparticles(TZP)were fabricated by the anti-solvent method and were used as an oral delivery vehicle to improve their bioavailability in the rat.The formulations of TZP were optimized.With mass ratio of 1:1:2 between taxifolin,zein and sodium caseinate,the particle size andζpotential of TZP were(168.74±0.35)nm and−(57.67±0.25)mV,while the encapsulation and loading efficiency of taxifolin were(85.83±0.89)%and(17.11±0.88)%,respectively.After freeze-drying,TZP exhibited excellent redispersibility in water without aggregation.Physicochemical characterization showed that taxifolin existed in amorphous form in TZP and its interaction with the protein was observed.After encapsulating in TZP,the excellent dispersion of taxifolin in water signifi cantly improve its diffusion velocity through a semipermeable membrane.After oral administration,taxifolin and its 5 metabolites were identifi ed in rat plasma by ultra high performance liquid chromatography(UPLC)with quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS).The dynamic variation of taxifolin and its metabolites in plasma were then quantifi ed by UPLC with a triple-quadrupole typemass spectroscopy(UPLC-QqQ-MS/MS).A pharmacokinetic study showed that the bioavailability of taxifolin increased from 0.35%to 0.52%through TZP fabrication.The plasma concentration of taxifolin glucuronide and methylated taxifolin glucuronide was much higher than taxifolin.Glucuronidation was the dominating metabolism pathway of taxifolin in vivo.
基金Fundamental Research Funds for the Central Universities,China(No. 2232022D-13)Fundamental Research Funds of Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-M inistry Joint),China(No. X12812101/015)。
文摘To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.
基金financially supported by the Research and Development Institute, Silpakorn University
文摘The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.
基金supported by the National Natural Science Foundation of China(Nos.50573011 and 50673019)
文摘Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased.
基金financially supported by the National Natural Science Foundation of China,No.31070862Science and Technology Plan of Guangzhou,No.12C32071662+1 种基金Research Foundation of Guangdong Provincial Bureau of Traditional Chinese Medicine,No.2013113scientific research and cultivating Foundation of the First Clinical Medical College of Jinan University,No.2012103 and No.2013208
文摘Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution, hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P〉0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.
基金Supported by the Grant 94 35 4 6 - 3from Science and Technology Commission of Jilin Province
文摘This study aims at the effects of an intake of low molecular weight corn peptides(LMCPs) prepared from zein on alcohol metablism in rats. LMCPs(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) were given to Wister rats by intragastric gavage. The assay of blood ethanol was conducted by using the enzyme based assay kit. The amino acid analysis was made with an amino acid analyzer. The data of the animal experiments showed that LMCPs could accelerate the metabolism of alcohol in rats. In the control group, the blood ethanol concentration reached the maximum level of (827.0±77.3) mg/L after ethanol loading for 30 min, then gradually decreased. In contrast, the blood ethanol concentration only reached (527.25±47.0) mg/L after 30 min in the group of LMCPs taken. These results indicate that LMCPs could decrease ethanol concentration in blood rapidly.
基金supported by a grant (30873289) from the Chinese National Science Foundation
文摘Aim Tissue engineering is a promising area with a broad range of applications in the fields of regenerative medicine and human health. The emergence of periodontal tissue engineering for clinical treatment of periodontal disease has opened a new therapeutic avenue. The choice of scaffold is crucial. This study was conducted to prepare zein scaffold and explore the suitability of zein and Shuanghuangbu for periodontal tissue engineering.Methodology A zein scaffold was made using the solvent casting/particulate leaching method with sodium chloride (NaC1) particles as the porogen. The physical properties of the zein scaffold were evaluated by observing its shape and determining its pore structure and porosity. Cytotoxicity testing of the scaffold was carried out via in vitro cell culture experiments, including a liquid extraction experi- ment and the direct contact assay. Also, the Chinese medicine Shuanghuangbu, as a growth factor, was diluted by scaffold extract into different concentrations. This Shuanghuangbu-scaffold extract was then added to periodontal ligament cells (PDLCs) in order to determineits effect on cell proliferation. Results The zein scaffold displayed a sponge-like structure with a high porosity and sufficient thickness. The porosity and pore size of the zein scaffold can be controlled by changing the porogen particles dosage and size. The porosity was up to 64.1%-78.0%. The pores were well-distributed, interconnected, and porous. The toxicity of the zein scaffold was graded as 0-1. Furthermore, PDLCs displayed full stretching and vigorous growth under scanning electronic microscope (SEM). Shuanghuangbu-scaffold extract could reinforce proliferation activity of PDLCs compared to the control group, especially at 100 μg.mL^-1 (P〈0.01). Conclusion A zein scaffold with high porosity, open pore wall structure, and good biocompatibility is conducive to the growth of PDLCs. Zein could be used as scaffold to repair periodontal tissue defects. Also, Shuanghuangbuscaffold extract can enhance the proliferation activity of PDLCs. Altogether, these findings provide the basis for in vivo testing on animals.
基金supported by NSF CBET 1929236the support on microscopy characterizations from the Franceschi Microscopy & Imaging Center at Washington State University.
文摘Practical implementations of rechargeable lithium(Li)metal batteries have long been plagued by multiple problems of Li anode,such as Li dendrite growth,large volume change,low Coulombic efficiency.Here,we report a protein-enabled film that can provide effective protection for Li metal.The protective film with an integrated design of high flexibility,strong adhesion and high Li-ion transference number(0.80)is fabricated by incorporating denatured zein(corn protein)with polyethylene oxide(PEO)acting as an age nt for sustaining the denatured protein chains against refolding via the intermolecular interactions between them.Thus,a conformable zein-enabled protective film(zein@PEO)with simultaneous en hancement in flexibility,modulus and adhesion strength is gen erated to offer both functi ons of self-adapting and anion-anchoring abilities.The results show that the zein@PEO film is able to accommodate the volume change,reduce the side reactions,and homogenize the ion deposition.Benefiting from these significant properties/fu nctions,the Li/Cu cell with the zein@PEO film delivers prolonged cycle life for over 500 hours with stable performance.Paired with LiMn_(2)O_(4) cathode,the capacity,cycle stability and rate performance of the cell are remarkably improved as well,demonstrati ng the effectiveness in stabilizing Li metal batteries.
文摘Zein,a class of alcohol-soluble prolamines in maize endosperm,is mainly composed of α-zein,β-zein,andγ-zein.It has been recognized as a structural protein for various gluten-free systems since it can form glutenlike viscoelastic network.The formation of viscoelastic zein network can make up for the structural defect of gluten-free doughs caused by the lack of gluten.To make the most of structural functionality of zein in glutenfree foods,it is important to clearly elucidate the fundamental properties of zein network.In this article,these properties have been discussed,analyzed and summarized from the relationship between protein network and structural functionality of zein,the feature and formation mechanism of zein network,factors affecting zein network and the applications of zein network in improving the quality of gluten-free food.In addition,this article also looks forward to potential research areas on zein network.
文摘Cellulose microfibril (CMF) was the extraction with acid mixture from peel of Musa sapientum Linn type of banana (Kluai Nam Wa). The fibrous-shape of CMF interconnected weblike structure with the average diameter 26 nm were observed by TEM. In order to prepare zein/CMF nanocomposite films, 16% wt zein solution was prepared by dissolved in 80% ethanol aqueous solution which contain glycerol 20% w/w. The suspension of CMF and zein solution was mixed with 0% - 5% weight fractions of solid CMF in zein matrix. The morphology of the zein films is more roughness by increased amount of cellulose microfibrils. It was found that as CMF content increase from 0 to 5% wt results in increasing tensile strength and Young’s modulus of zein nanocomposite films. The highest strength obtains at 4% wt CMF.
基金Supported by the National Natural Science Foundation of China(21476086)Guangdong Natural Science Foundation(2014A030312007)
文摘Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties and release properties of developed zein films were investigated in detail. The results of microstructure characterization indicated that zein-based films became compact and smooth, and LY aggregates were well distributed in the zein matrix because of the simultaneous addition of LY and AA. The results of mechanical tests showed that because of the synergistic effects of LY and AA on zein film, elongation at break of zein-based film could be up to 138%, which was 34.5 times higher than that of zein control film. LY release tests showed that when the concentration of AA was less than 3.1 mg·cm^(-2), the release rate of LY significantly decreased by 33.7%, and the total release increased by 80.6%. While the release profiles of AA showed that the release rate and total release of AA from the films containing LY increased by approximately 68.9% and 61.7% than the films without LY. Good antioxidant and sustained antimicrobial activities were found for the developed zein films.