期刊文献+
共找到31,530篇文章
< 1 2 250 >
每页显示 20 50 100
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
1
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine
2
作者 Arslan Akram Imran Khan +4 位作者 Javed Rashid Mubbashar Saddique Muhammad Idrees Yazeed Yasin Ghadi Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2024年第1期1311-1328,共18页
Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial i... Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods. 展开更多
关键词 CURVELETS fast fourier transformation support vector machine high pass filters STEGANOGRAPHY
下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
3
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
下载PDF
Performance Analysis of Support Vector Machine (SVM) on Challenging Datasets for Forest Fire Detection
4
作者 Ankan Kar Nirjhar Nath +1 位作者 Utpalraj Kemprai   Aman 《International Journal of Communications, Network and System Sciences》 2024年第2期11-29,共19页
This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to... This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus. 展开更多
关键词 support vector machine Challenging Datasets Forest Fire Detection CLASSIFICATION
下载PDF
Quantum Fuzzy Support Vector Machine for Binary Classification
5
作者 Xi Huang Shibin Zhang +1 位作者 Chen Lin Jinyue Xia 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2783-2794,共12页
In the objective world,how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning.Fuzzy support vector machine(FSVM)not only deals with th... In the objective world,how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning.Fuzzy support vector machine(FSVM)not only deals with the classifi-cation problems for training samples with fuzzy information,but also assigns a fuzzy membership degree to each training sample,allowing different training samples to contribute differently in predicting an optimal hyperplane to separate two classes with maximum margin,reducing the effect of outliers and noise,Quantum computing has super parallel computing capabilities and holds the pro-mise of faster algorithmic processing of data.However,FSVM and quantum com-puting are incapable of dealing with the complexity and uncertainty of big data in an efficient and accurate manner.This paper research and propose an efficient and accurate quantum fuzzy support vector machine(QFSVM)algorithm based on the fact that quantum computing can efficiently process large amounts of data and FSVM is easy to deal with the complexity and uncertainty problems.The central idea of the proposed algorithm is to use the quantum algorithm for solving linear systems of equations(HHL algorithm)and the least-squares method to solve the quadratic programming problem in the FSVM.The proposed algorithm can deter-mine whether a sample belongs to the positive or negative class while also achiev-ing a good generalization performance.Furthermore,this paper applies QFSVM to handwritten character recognition and demonstrates that QFSVM can be run on quantum computers,and achieve accurate classification of handwritten characters.When compared to FSVM,QFSVM’s computational complexity decreases expo-nentially with the number of training samples. 展开更多
关键词 Quantum fuzzy support vector machine(QFSVM) fuzzy support vector machine(FSVM) quantum computing
下载PDF
Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms
6
作者 Chuanqi Li Jian Zhou +1 位作者 Kun Du Daniel Dias 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1019-1036,共18页
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet... Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability. 展开更多
关键词 Underground pillar stability Hard rock support vector machine Metaheuristic algorithms
下载PDF
A new hybrid approach to assessing soil quality using neutrosophic fuzzy-AHP and support vector machine algorithm in sub-humid ecosystem
7
作者 ÖZKAN Barış DENGIZ Orhan +1 位作者 ALABOZ Pelin KAYA NursaçSerda 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3186-3202,共17页
Soil quality determination and estimation is an important issue not only for terrestrial ecosystems but also for sustainable management of soils.In this study,soil quality was determined by linear and nonlinear standa... Soil quality determination and estimation is an important issue not only for terrestrial ecosystems but also for sustainable management of soils.In this study,soil quality was determined by linear and nonlinear standard scoring function methods integrated with a neutrosophic fuzzy analytic hierarchy process in the micro catchment.In addition,soil quality values were estimated using a support vector machine(SVM)in machine learning algorithms.In order to generate spatial distribution maps of soil quality indice values,different interpolation methods were evaluated to detect the most suitable semivariogram model.While the soil quality index values obtained by the linear method were determined between 0.458-0.717,the soil quality index with the nonlinear method showed variability at the levels of 0.433-0.651.There was no statistical difference between the two methods,and they were determined to be similar.In the estimation of soil quality with SVM,the normalized root means square error(NRMSE)values obtained in the linear and nonlinear method estimation were determined as 0.057 and 0.047,respectively.The spherical model of simple kriging was determined as the interpolation method with the lowest RMSE value in the actual and predicted values of the linear method while,in the nonlinear method,the lowest error in the distribution maps was determined with exponential of the simple kriging. 展开更多
关键词 Soil quality support vector machine Neutrosophic fuzzy Humid ecosystem
原文传递
Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine
8
作者 Iftikhar Naseer Tehreem Masood +3 位作者 Sheeraz Akram Arfan Jaffar Muhammad Rashid Muhammad Amjad Iqbal 《Computers, Materials & Continua》 SCIE EI 2023年第1期2039-2054,共16页
Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a sig... Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a significant role in detecting and screening lung cancer in Computed tomography(CT)scan images.Early detection plays an important role in the survival rate and treatment of lung cancer patients.Moreover,pulmonary nodule classification techniques based on the convolutional neural network can be used for the accurate and efficient detection of lung cancer.This work proposed an automatic nodule detection method in CT images based on modified AlexNet architecture and Support vector machine(SVM)algorithm namely LungNet-SVM.The proposed model consists of seven convolutional layers,three pooling layers,and two fully connected layers used to extract features.Support vector machine classifier is applied for the binary classification of nodules into benign andmalignant.The experimental analysis is performed by using the publicly available benchmark dataset Lung nodule analysis 2016(LUNA16).The proposed model has achieved 97.64%of accuracy,96.37%of sensitivity,and 99.08%of specificity.A comparative analysis has been carried out between the proposed LungNet-SVM model and existing stateof-the-art approaches for the classification of lung cancer.The experimental results indicate that the proposed LungNet-SVM model achieved remarkable performance on a LUNA16 dataset in terms of accuracy. 展开更多
关键词 Lung cancer alexnet luna16 computed tomography support vector machine
下载PDF
Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection
9
作者 Jahanzaib Latif Shanshan Tu +3 位作者 Chuangbai Xiao Anas Bilal Sadaqat Ur Rehman Zohaib Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第7期1151-1172,共22页
Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require special... Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require specialized expertise.This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine(EGWO-SVM)method.The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter(AMF)and feature extraction using the previously processed speeded-up robust feature(SURF),histogram of oriented gradients(HOG),and Global features.The enhanced Grey Wolf Optimization(GWO)technique is then employed with SVM for classification.To evaluate the proposed method,we used the online retinal images for glaucoma analysis(ORIGA)database,and it achieved high accuracy,sensitivity,and specificity rates of 94%,92%,and 92%,respectively.The results demonstrate that the proposed method outperforms other current algorithms in detecting the presence or absence of Glaucoma.This study provides a novel and effective approach to Glaucoma detection that can potentially improve the detection process and outcomes. 展开更多
关键词 Glaucoma detection grey golf optimization support vector machine feature extraction image classification
下载PDF
Facial Expression Recognition Model Depending on Optimized Support Vector Machine
10
作者 Amel Ali Alhussan Fatma M.Talaat +4 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第7期499-515,共17页
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t... In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score. 展开更多
关键词 Facial expression recognition machine learning linear dis-criminant analysis(LDA) support vector machine(SVM) grid search
下载PDF
SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management
11
作者 Ana María Peco Chacón Isaac Segovia Ramírez Fausto Pedro García Márquez 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co... Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification. 展开更多
关键词 machine learning classification support vector machine false alarm wind turbine cross-validation
下载PDF
Heterogeneity identification method for surrounding rock of large-section rock tunnel faces based on support vector machine
12
作者 Wenhao Yi Mingnian Wang +4 位作者 Jianjun Tong Siguang Zhao Jiawang Li Dengbin Gui Xiao Zhang 《Railway Sciences》 2023年第1期48-67,共20页
Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.... Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.Design/methodology/approach–Relying on the support vector machine(SVM)-based classification model,the nominal classification of blastholes and nominal zoning and classification terms were used to demonstrate the heterogeneity identification method for the surrounding rock of tunnel face,and the identification calculation was carried out for the five test tunnels.Then,the suggestions for local optimization of the support structures of large-section rock tunnels were put forward.Findings–The results show that compared with the two classification models based on neural networks,the SVM-based classification model has a higher classification accuracy when the sample size is small,and the average accuracy can reach 87.9%.After the samples are replaced,the SVM-based classification model can still reach the same accuracy,whose generalization ability is stronger.Originality/value–By applying the identification method described in this paper,the significant heterogeneity characteristics of the surrounding rock in the process of two times of blasting were identified,and the identification results are basically consistent with the actual situation of the tunnel face at the end of blasting,and can provide a basis for local optimization of support parameters. 展开更多
关键词 Rock tunnel Surrounding rock HETEROGENEITY support vector machine High-speed railway
下载PDF
Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
13
作者 Makhamisa Senekane Benedict Molibeli Taele 《Smart Grid and Renewable Energy》 2016年第12期293-301,共9页
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo... Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation. 展开更多
关键词 QUANTUM Quantum machine Learning machine Learning support vector machine Quantum support vector machine ENERGY Solar Irradiation
下载PDF
Identifcation of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine 被引量:14
14
作者 Zhou Jian Li Xibing +2 位作者 Hani S.Mitri Wang Shiming Wei Wei 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期701-707,共7页
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi... An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research. 展开更多
关键词 GOAF Risk identifcation Underground mine Prediction Particle swarm optimization support vector machine
下载PDF
Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature 被引量:6
15
作者 Mohammad Mesbah Ebrahim Soroush Mashallah Rezakazemi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1238-1248,共11页
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.... Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model. 展开更多
关键词 Hydrate formation temperature(HFT) Natural gas Sour gases Least squares support vector machine Outlier diagnostics Leverage approach
下载PDF
Weather Prediction With Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System 被引量:7
16
作者 Wenying Zhang Huaguang Zhang +3 位作者 Jinhai Liu Kai Li Dongsheng Yang Hui Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期520-525,共6页
Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft mea... Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective. 展开更多
关键词 Fault detection multiclass support vector machines photovoltaic power system particle swarm optimization(PSO) weather prediction
下载PDF
Lithofacies identi cation using support vector machine based on local deep multi-kernel learning 被引量:5
17
作者 Xing-Ye Liu Lin Zhou +1 位作者 Xiao-Hong Chen Jing-Ye Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期954-966,共13页
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie... Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM. 展开更多
关键词 Lithofacies discriminant support vector machine Multi-kernel learning Reservoir prediction machine learning
下载PDF
Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine 被引量:4
18
作者 Sananda Kundu Deepak Khare Arun Mondal 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第3期583-596,共14页
Climate change affects the environment and natural resources immensely.Rainfall,temperature and evapotranspiration are major parameters of climate affecting changes in the environment.Evapotranspiration plays a key ro... Climate change affects the environment and natural resources immensely.Rainfall,temperature and evapotranspiration are major parameters of climate affecting changes in the environment.Evapotranspiration plays a key role in crop production and water balance of a region,one of the major parameters affected by climate change.The reference evapotranspiration or ETo is a calculated parameter used in this research.In the present study,changes in the future rainfall,minimum and maximum temperature,and ETo have been shown by downscaling the HadCM3(Hadley Centre Coupled Model version 3) model data.The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India.The downscaled outputs of projected rainfall,ET_0 and temperatures have been shown for the 21 st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine(LS-SVM)model.The efficiency of the LS-SVM model was measured by different statistical methods.The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature.Results showed an increase in the future rainfall,temperatures and ETo.The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May.Highest increase is projected in the 2080 s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations.Winter maximum temperature has been observed to have increased in the future.High rainfall is also observed with higher ETo in some decades.Two peaks of the increase are observed in ET_0 in the April-May and in the October.Variation in these parameters due to climate change might have an impact on the future water resource of the study area,which is mainly an agricultural based region,and will help in proper planning and management. 展开更多
关键词 RAINFALL TEMPERATURE Reference evapotranspiration(ET0) DOWNSCALING Least Square support vector machine (LS-SVM)
下载PDF
Probabilistic back analysis for geotechnical engineering based on Bayesian and support vector machine 被引量:2
19
作者 陈炳瑞 赵洪波 +1 位作者 茹忠亮 李贤 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4778-4786,共9页
Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support v... Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects. 展开更多
关键词 geotechnical engineering back analysis UNCERTAINTY Bayesian theory least square method support vector machine(SVM)
下载PDF
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:2
20
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部