大多数现有的视觉语言预训练方法侧重于理解任务,并在训练时使用类似于BERT的损失函数(掩码语言建模和图像文本匹配).尽管它们在许多理解类型的下游任务中表现良好,例如视觉问答、图像文本检索和视觉蕴涵,但它们不具备生成信息的能力....大多数现有的视觉语言预训练方法侧重于理解任务,并在训练时使用类似于BERT的损失函数(掩码语言建模和图像文本匹配).尽管它们在许多理解类型的下游任务中表现良好,例如视觉问答、图像文本检索和视觉蕴涵,但它们不具备生成信息的能力.为了解决这个问题,提出了视觉语言理解和生成的统一多模态预训练(unified multimodal pre-training for vision-language understanding and generation,UniVL).UniVL能够处理理解任务和生成任务,并扩展了现有的预训练范式,同时使用随机掩码和因果掩码,因果掩码即掩盖未来标记的三角形掩码,这样预训练的模型可以具有自回归生成的能力.将几种视觉语言理解任务规范为文本生成任务,并使用基于模版提示的方法对不同的下游任务进行微调.实验表明,在使用同一个模型时,理解任务和生成任务之间存在权衡,而提升这两个任务的可行方法是使用更多的数据.UniVL框架在理解任务和生成任务方面的性能与最近的视觉语言预训练方法相当.此外,实验还证明了基于模版提示的生成方法更有效,甚至在少数场景中它优于判别方法.展开更多
针对股评论坛主题发现,提出基于频繁项集与潜在语义相结合的短文本聚类(STC_FL)框架.在基于知网的知识获取后得到概念向量空间,挖掘并筛选出重要频繁项集,然后采用统计和潜在语义相结合的方法进行重要频繁项集的自适应聚类.最后,提出TSC...针对股评论坛主题发现,提出基于频繁项集与潜在语义相结合的短文本聚类(STC_FL)框架.在基于知网的知识获取后得到概念向量空间,挖掘并筛选出重要频繁项集,然后采用统计和潜在语义相结合的方法进行重要频繁项集的自适应聚类.最后,提出TSC-SN(text soft classifying based on similarity threshold and non-overlapping)算法,通过参数调优策略选择和控制文本软聚类过程.股吧论坛数据实证分析发现:所提出的STC_FL框架和TSC-SN算法可充分挖掘文本潜在语义信息,并有效降低特征空间维度,最终实现对短文本的深层次信息挖掘和主题归类.展开更多
QUIC是由Google提出的用于替代TCP(Transmission Control Protocol)的互联网数据传输协议.它引入了许多新的特性,从而在理论上拥有比TCP更好的性能.例如,它通过多路传输解决了队头阻塞问题,通过0-RTT握手降低了传输层握手延时,以及通过...QUIC是由Google提出的用于替代TCP(Transmission Control Protocol)的互联网数据传输协议.它引入了许多新的特性,从而在理论上拥有比TCP更好的性能.例如,它通过多路传输解决了队头阻塞问题,通过0-RTT握手降低了传输层握手延时,以及通过连接迁移更好地对移动性提供支持.但是,现实生活中的网络环境和终端设备是多样性的,并且互联网中存在着各种各样的攻击,所以QUIC在实际网络中的表现可能并不如预期.因此,探究QUIC对现有网络服务的影响是一项很重要的工作.首先介绍了QUIC的发展历史及其主要特性,并以目前使用最为广泛的2个应用场景——网页浏览和视频传输——为例,介绍并总结了国内外对QUIC在不同网络环境下的传输性能的研究分析.随后,从协议设计和系统设计2个方面列举了目前已有的对QUIC的优化工作,并对现有的对QUIC安全性分析的相关工作进行总结,还列举了目前学术界公认的QUIC所存在的安全性问题以及研究者为解决此类问题所作出的努力.最后,对现有研究成果可能的进一步提高之处进行了总结,并对QUIC带来的新的研究课题及其挑战进行了展望.展开更多
提出算法预测基金经理对股票的投资策略,为个体投资者提供投资意见。不同于仅依据股票本身信息推荐的传统算法,该算法通过高阶奇异值分解算法HOSVD(Higher Order Singular Value Decomposition)学习基金经理的历史交易记录和投资者的个...提出算法预测基金经理对股票的投资策略,为个体投资者提供投资意见。不同于仅依据股票本身信息推荐的传统算法,该算法通过高阶奇异值分解算法HOSVD(Higher Order Singular Value Decomposition)学习基金经理的历史交易记录和投资者的个人特征因素,为投资者提供个性化推荐。除此之外,将非个性化推荐与个性化推荐进行整合,进一步提高推荐质量。对真实股票交易数据的仿真实验结果表明,用于推荐的个性化算法在准确度和收益率方面,优于传统的非个性化算法。展开更多
文摘大多数现有的视觉语言预训练方法侧重于理解任务,并在训练时使用类似于BERT的损失函数(掩码语言建模和图像文本匹配).尽管它们在许多理解类型的下游任务中表现良好,例如视觉问答、图像文本检索和视觉蕴涵,但它们不具备生成信息的能力.为了解决这个问题,提出了视觉语言理解和生成的统一多模态预训练(unified multimodal pre-training for vision-language understanding and generation,UniVL).UniVL能够处理理解任务和生成任务,并扩展了现有的预训练范式,同时使用随机掩码和因果掩码,因果掩码即掩盖未来标记的三角形掩码,这样预训练的模型可以具有自回归生成的能力.将几种视觉语言理解任务规范为文本生成任务,并使用基于模版提示的方法对不同的下游任务进行微调.实验表明,在使用同一个模型时,理解任务和生成任务之间存在权衡,而提升这两个任务的可行方法是使用更多的数据.UniVL框架在理解任务和生成任务方面的性能与最近的视觉语言预训练方法相当.此外,实验还证明了基于模版提示的生成方法更有效,甚至在少数场景中它优于判别方法.
文摘针对股评论坛主题发现,提出基于频繁项集与潜在语义相结合的短文本聚类(STC_FL)框架.在基于知网的知识获取后得到概念向量空间,挖掘并筛选出重要频繁项集,然后采用统计和潜在语义相结合的方法进行重要频繁项集的自适应聚类.最后,提出TSC-SN(text soft classifying based on similarity threshold and non-overlapping)算法,通过参数调优策略选择和控制文本软聚类过程.股吧论坛数据实证分析发现:所提出的STC_FL框架和TSC-SN算法可充分挖掘文本潜在语义信息,并有效降低特征空间维度,最终实现对短文本的深层次信息挖掘和主题归类.
文摘QUIC是由Google提出的用于替代TCP(Transmission Control Protocol)的互联网数据传输协议.它引入了许多新的特性,从而在理论上拥有比TCP更好的性能.例如,它通过多路传输解决了队头阻塞问题,通过0-RTT握手降低了传输层握手延时,以及通过连接迁移更好地对移动性提供支持.但是,现实生活中的网络环境和终端设备是多样性的,并且互联网中存在着各种各样的攻击,所以QUIC在实际网络中的表现可能并不如预期.因此,探究QUIC对现有网络服务的影响是一项很重要的工作.首先介绍了QUIC的发展历史及其主要特性,并以目前使用最为广泛的2个应用场景——网页浏览和视频传输——为例,介绍并总结了国内外对QUIC在不同网络环境下的传输性能的研究分析.随后,从协议设计和系统设计2个方面列举了目前已有的对QUIC的优化工作,并对现有的对QUIC安全性分析的相关工作进行总结,还列举了目前学术界公认的QUIC所存在的安全性问题以及研究者为解决此类问题所作出的努力.最后,对现有研究成果可能的进一步提高之处进行了总结,并对QUIC带来的新的研究课题及其挑战进行了展望.
文摘提出算法预测基金经理对股票的投资策略,为个体投资者提供投资意见。不同于仅依据股票本身信息推荐的传统算法,该算法通过高阶奇异值分解算法HOSVD(Higher Order Singular Value Decomposition)学习基金经理的历史交易记录和投资者的个人特征因素,为投资者提供个性化推荐。除此之外,将非个性化推荐与个性化推荐进行整合,进一步提高推荐质量。对真实股票交易数据的仿真实验结果表明,用于推荐的个性化算法在准确度和收益率方面,优于传统的非个性化算法。