为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部...为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。展开更多
岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5...岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。展开更多
文摘为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。
文摘岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。