期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
场地平整土方量优化计算的研究与实现
1
作者 潘琦 潘庆林 《工程勘察》 CSCD 北大核心 2006年第8期42-43,62,共3页
本文论述了场地平整土方量的优化计算方法及其实现,对于已有地形图的场地平整,这是十分有用的方法。并以VC++编程实例说明该法是实用可靠的。
关键词 场地平整 土方计算 VC++
原文传递
Embedding-based approximate query for knowledge graph
2
作者 Qiu Jingyi Zhang Duxi +5 位作者 Song Aibo Wang Honglin Zhang Tianbo Jin Jiahui Fang Xiaolin Li Yaqi 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期417-424,共8页
To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are cla... To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are classified according to the degrees of approximation required for different types of nodes.This classification transforms the query problem into three constraints,from which approximate information is extracted.Second,candidates are generated by calculating the similarity between embeddings.Finally,a deep neural network model is designed,incorporating a loss function based on the high-dimensional ellipsoidal diffusion distance.This model identifies the distance between nodes using their embeddings and constructs a score function.k nodes are returned as the query results.The results show that the proposed method can return both exact results and approximate matching results.On datasets DBLP(DataBase systems and Logic Programming)and FUA-S(Flight USA Airports-Sparse),this method exhibits superior performance in terms of precision and recall,returning results in 0.10 and 0.03 s,respectively.This indicates greater efficiency compared to PathSim and other comparative methods. 展开更多
关键词 approximate query knowledge graph EMBEDDING deep neural network
下载PDF
量子主成分分析算法 被引量:33
3
作者 阮越 陈汉武 +2 位作者 刘志昊 张俊 朱皖宁 《计算机学报》 EI CSCD 北大核心 2014年第3期666-676,共11页
主成分分析(Principal Component Analysis,PCA)是模式识别领域,尤其是人脸识别中一种应用广泛的重要算法.然而,在此算法及其后续的改造算法中始终存在两个主要问题:(1)降维处理后的特征空间依然较大;(2)用于比较两幅人脸特征相似性的... 主成分分析(Principal Component Analysis,PCA)是模式识别领域,尤其是人脸识别中一种应用广泛的重要算法.然而,在此算法及其后续的改造算法中始终存在两个主要问题:(1)降维处理后的特征空间依然较大;(2)用于比较两幅人脸特征相似性的测度方法计算量较大,从而导致算法在识别阶段的时间效率较差.该文基于量子信息的相关理论与方法,并受算术编码基本思想的启发,提出了量子PCA算法.设计了一种人脸特征编码方案,进一步压缩了降维处理后的特征空间;将两幅人脸特征的相似性测度方法改为在某一阈值条件下的等值判定;应用Grover算法修改识别阶段的处理流程,使得算法的时间效率有了显著提高. 展开更多
关键词 主成分分析 人脸识别 量子计算 算术编码 Grover算法中图法
下载PDF
基于汉明距离递减变换的可逆逻辑综合算法 被引量:8
4
作者 陈汉武 李文骞 +1 位作者 阮越 李志强 《计算机学报》 EI CSCD 北大核心 2014年第8期1839-1845,共7页
可逆逻辑综合是指对给定的可逆函数自动构造对应的可逆逻辑电路.现有的可逆逻辑综合算法虽然通过后期优化能够得到近似最优解,但是都存在生成的原始电路门数较多的问题,增加了后期优化工作的难度.文中提出一种基于真值表异位数计算的综... 可逆逻辑综合是指对给定的可逆函数自动构造对应的可逆逻辑电路.现有的可逆逻辑综合算法虽然通过后期优化能够得到近似最优解,但是都存在生成的原始电路门数较多的问题,增加了后期优化工作的难度.文中提出一种基于真值表异位数计算的综合方法,根据异位数判定是否需增加逻辑非门达到减少输入和输出向量的汉明距离,从而实现边计算边简化函数,最后采用汉明距离递减变换的方法生成最终的电路.通过实验表明,相比于其他的综合算法,该算法得到的原始电路更接近于最优解或近似最优解,很大程度上减少了算法后续的优化工作量. 展开更多
关键词 可逆逻辑综合 扩展Toffoli门 汉明距离 异位数
下载PDF
基于量子衍生算法的8-puzzle问题分析 被引量:1
5
作者 许精明 阮越 《量子电子学报》 CAS CSCD 北大核心 2015年第4期459-465,共7页
阐述了量子编码形式的多样性,概述了8-puzzle启发式搜索问题的量子衍生算法与计算策略。通过设置扩展深度界限,运用量子计数器和酉变换操作进行8-puzzle问题的量子计算,比较了量子衍生算法与经典算法,对启发式智能搜索在量子计算机上的... 阐述了量子编码形式的多样性,概述了8-puzzle启发式搜索问题的量子衍生算法与计算策略。通过设置扩展深度界限,运用量子计数器和酉变换操作进行8-puzzle问题的量子计算,比较了量子衍生算法与经典算法,对启发式智能搜索在量子计算机上的实现方式作了进一步的讨论。 展开更多
关键词 量子信息 8-puzzle 量子衍生算法 启发函数 智能搜索
下载PDF
A multi-attention RNN-based relation linking approach for question answering over knowledge base 被引量:2
6
作者 Li Huiying Zhao Man Yu Wenqi 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期385-392,共8页
Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural... Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding. 展开更多
关键词 question answering over knowledge base(KBQA) entity linking relation linking multi-attention bidirectional long short-term memory(Bi-LSTM) large-scale complex question answering dataset(LC-QuAD)
下载PDF
Revision of stratified OWL ontologiesbased on integer linear programming
7
作者 Ji Qiu Qi Guilin Boutouhami Khaoula 《Journal of Southeast University(English Edition)》 EI CAS 2020年第1期1-7,共7页
To revise stratified web ontology language(OWL)ontologies,the kernel revision operator is extended by defining novel conflict stratification and the incision function based on integer linear programming(ILP).The ILP-b... To revise stratified web ontology language(OWL)ontologies,the kernel revision operator is extended by defining novel conflict stratification and the incision function based on integer linear programming(ILP).The ILP-based model considers an optimization problem of minimizing a linear objective function which is suitable for selecting the minimal number of axioms to remove when revising ontologies.Based on the incision function,a revision algorithm is proposed to apply ILP to all minimal incoherence-preserving subsets(MIPS).Although this algorithm can often find a minimal number of axioms to remove,it is very time-consuming to compute MIPS.Thus,an adapted revision algorithm to deal with unsatisfiable concepts individually is also given.Experimental results reveal that the proposed ILP-based revision algorithm is much more efficient than the commonly used algorithm based on the hitting set tree.In addition,the adapted algorithm can achieve higher efficiency,while it may delete more axioms. 展开更多
关键词 ontology revision inconsistency handling semantic web integer linear programming
下载PDF
Hierarchical annotation method for metal corrosion detection of power equipment
8
作者 Zhang Baili Cao YongZhang Pei +2 位作者 Zhang Zhao He Yina Zhong Mingjun 《Journal of Southeast University(English Edition)》 EI CAS 2021年第4期350-355,共6页
To solve the ambiguity and uncertainty in the labeling process of power equipment corrosion datasets,a novel hierarchical annotation method(HAM)is proposed.Firstly,large boxes are used to label a large area covering t... To solve the ambiguity and uncertainty in the labeling process of power equipment corrosion datasets,a novel hierarchical annotation method(HAM)is proposed.Firstly,large boxes are used to label a large area covering the range of corrosion,provided that the area is visually continuous and adjacent to corrosion that cannot be clearly divided.Secondly,in each labeling box established in the first step,regions with distinct corrosion and relative independence are labeled to form a second layer of nested boxes.Finally,a series of comparative experiments are conducted with other common annotation methods to validate the effectiveness of HAM.The experimental results show that,with the help of HAM,the recall of YOLOv5 increases from 50.79%to 59.41%;the recall of Faster R-CNN+VGG16 increases from 66.50%to 78.94%;the recall of Faster R-CNN+Res101 increases from 78.32%to 84.61%.Therefore,HAM can effectively improve the detection ability of mainstream models in detecting metal corrosion. 展开更多
关键词 deep learning Faster R-CNN YOLOv5 object detection hierarchical annotation
下载PDF
量子稳定子码的差错纠正与译码网络构建 被引量:1
9
作者 肖芳英 陈汉武 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第8期25-31,共7页
寻找差错症状与差错算子之间映射关系是量子译码网络的核心内容,也是量子译码网络实现纠错功能的关键.给出了比特翻转差错症状矩阵和相位翻转差错症状矩阵的定义,将任意Pauli差错算子的差错症状表示为比特翻转差错症状矩阵和相位翻转差... 寻找差错症状与差错算子之间映射关系是量子译码网络的核心内容,也是量子译码网络实现纠错功能的关键.给出了比特翻转差错症状矩阵和相位翻转差错症状矩阵的定义,将任意Pauli差错算子的差错症状表示为比特翻转差错症状矩阵和相位翻转差错症状矩阵的线性组合.研究发现,量子稳定子码的差错症状矩阵由其校验矩阵所决定,从而可将差错症状矩阵与差错算子之间的映射关系转化为校验矩阵与差错算子之间的映射关系,使得所有关于差错症状的分析都可以通过分析其校验矩阵来实现.这与经典线性码的差错症状与奇偶校验矩阵之间的关系类似,因此可以将经典线性码的差错检测和纠正相关成果扩展到量子码的译码过程.基于差错算子与差错症状之间的对应关系给出了构造量子差错纠正电路的方法,根据编码算子的酉性得到了基于编码算子逆算子的译码网络构建方法. 展开更多
关键词 稳定子码 校验矩阵 差错症状 Pauli算子
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部