提出了一种双通道可重构14 bit 125 MS/s流水线模数转换器(ADC).该双通道14 bit ADC可工作在并行双通道14 bit 125 MS/s、时间交织14 bit 250 MS/s以及求和15 bit 125 MS/s三种模式.为抑制通道间失配误差的影响,提出一种数模混合前台校...提出了一种双通道可重构14 bit 125 MS/s流水线模数转换器(ADC).该双通道14 bit ADC可工作在并行双通道14 bit 125 MS/s、时间交织14 bit 250 MS/s以及求和15 bit 125 MS/s三种模式.为抑制通道间失配误差的影响,提出一种数模混合前台校准技术.为减少ADC输出端口数目,数据输出由高速串行数据发送器驱动,并且其工作模式有1.75,2,3.5 Gbit/s三种.该ADC电路采用0.18μm 1P5M 1.8 V CMOS工艺实现,测试结果表明,对于相同的10.1 MHz的输入信号,该ADC电路在14 bit 125 MS/s模式下的SNR和SFDR分别为72.5 dBFS和83.1dB,在14 bit 250 MS/s模式下的SNR和SFDR分别为71.3 dBFS和77.6 dB,在15 bit 125 MS/s模式下的SNR和SFDR分别为75.3 dBFS和87.4 dB.芯片总体功耗为461 mW,单通道ADC内核功耗为210 mW,面积为1.3×4 mm^2.展开更多
To overcome the drawbacks such as irregular circuit construction and low system throughput that exist in conventional methods, a new factor correction scheme for coordinate rotation digital computer( CORDIC) algorit...To overcome the drawbacks such as irregular circuit construction and low system throughput that exist in conventional methods, a new factor correction scheme for coordinate rotation digital computer( CORDIC) algorithm is proposed. Based on the relationship between the iteration formulae, a new iteration formula is introduced, which leads the correction operation to be several simple shifting and adding operations. As one key part, the effects caused by rounding error are analyzed mathematically and it is concluded that the effects can be degraded by an appropriate selection of coefficients in the iteration formula. The model is then set up in Matlab and coded in Verilog HDL language. The proposed algorithm is also synthesized and verified in field-programmable gate array (FPGA). The results show that this new scheme requires only one additional clock cycle and there is no change in the elementary iteration for the same precision compared with the conventional algorithm. In addition, the circuit realization is regular and the change in system throughput is very minimal.展开更多
文摘提出了一种双通道可重构14 bit 125 MS/s流水线模数转换器(ADC).该双通道14 bit ADC可工作在并行双通道14 bit 125 MS/s、时间交织14 bit 250 MS/s以及求和15 bit 125 MS/s三种模式.为抑制通道间失配误差的影响,提出一种数模混合前台校准技术.为减少ADC输出端口数目,数据输出由高速串行数据发送器驱动,并且其工作模式有1.75,2,3.5 Gbit/s三种.该ADC电路采用0.18μm 1P5M 1.8 V CMOS工艺实现,测试结果表明,对于相同的10.1 MHz的输入信号,该ADC电路在14 bit 125 MS/s模式下的SNR和SFDR分别为72.5 dBFS和83.1dB,在14 bit 250 MS/s模式下的SNR和SFDR分别为71.3 dBFS和77.6 dB,在15 bit 125 MS/s模式下的SNR和SFDR分别为75.3 dBFS和87.4 dB.芯片总体功耗为461 mW,单通道ADC内核功耗为210 mW,面积为1.3×4 mm^2.
基金The National High Technology Research and Development Program of China (863 Program)(No.2007AA01Z280)
文摘To overcome the drawbacks such as irregular circuit construction and low system throughput that exist in conventional methods, a new factor correction scheme for coordinate rotation digital computer( CORDIC) algorithm is proposed. Based on the relationship between the iteration formulae, a new iteration formula is introduced, which leads the correction operation to be several simple shifting and adding operations. As one key part, the effects caused by rounding error are analyzed mathematically and it is concluded that the effects can be degraded by an appropriate selection of coefficients in the iteration formula. The model is then set up in Matlab and coded in Verilog HDL language. The proposed algorithm is also synthesized and verified in field-programmable gate array (FPGA). The results show that this new scheme requires only one additional clock cycle and there is no change in the elementary iteration for the same precision compared with the conventional algorithm. In addition, the circuit realization is regular and the change in system throughput is very minimal.