Computer-aided diagnosis(CAD)can detect tuberculosis(TB)cases,providing radiologists with more accurate and efficient diagnostic solutions.Various noise information in TB chest X-ray(CXR)images is a major challenge in...Computer-aided diagnosis(CAD)can detect tuberculosis(TB)cases,providing radiologists with more accurate and efficient diagnostic solutions.Various noise information in TB chest X-ray(CXR)images is a major challenge in this classification task.This study aims to propose a model with high performance in TB CXR image detection named multi-scale input mirror network(MIM-Net)based on CXR image symmetry,which consists of a multi-scale input feature extraction network and mirror loss.The multi-scale image input can enhance feature extraction,while the mirror loss can improve the network performance through self-supervision.We used a publicly available TB CXR image classification dataset to evaluate our proposed method via 5-fold cross-validation,with accuracy,sensitivity,specificity,positive predictive value,negative predictive value,and area under curve(AUC)of 99.67%,100%,99.60%,99.80%,100%,and 0.9999,respectively.Compared to other models,MIM-Net performed best in all metrics.Therefore,the proposed MIM-Net can effectively help the network learn more features and can be used to detect TB in CXR images,thus assisting doctors in diagnosing.展开更多
基金supported by the Joint Fund of the Ministry of Education for Equipment Pre-research(No.8091B0203)National Key Research and Development Program of China(No.2020YFC2008700)。
文摘Computer-aided diagnosis(CAD)can detect tuberculosis(TB)cases,providing radiologists with more accurate and efficient diagnostic solutions.Various noise information in TB chest X-ray(CXR)images is a major challenge in this classification task.This study aims to propose a model with high performance in TB CXR image detection named multi-scale input mirror network(MIM-Net)based on CXR image symmetry,which consists of a multi-scale input feature extraction network and mirror loss.The multi-scale image input can enhance feature extraction,while the mirror loss can improve the network performance through self-supervision.We used a publicly available TB CXR image classification dataset to evaluate our proposed method via 5-fold cross-validation,with accuracy,sensitivity,specificity,positive predictive value,negative predictive value,and area under curve(AUC)of 99.67%,100%,99.60%,99.80%,100%,and 0.9999,respectively.Compared to other models,MIM-Net performed best in all metrics.Therefore,the proposed MIM-Net can effectively help the network learn more features and can be used to detect TB in CXR images,thus assisting doctors in diagnosing.