期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Elman神经网络的阿拉善荒漠啮齿动物群落组成物种数量预测研究 被引量:2
1
作者 卢志宏 武晓东 +8 位作者 郭利彪 付和平 满都呼 岳闯 柴享贤 包达尔罕 杨素文 叶丽娜 李燕妮 《生态环境学报》 CSCD 北大核心 2015年第12期1976-1982,共7页
群落的数量变动及预测是生态学研究的重要内容,将神经网络技术应用到啮齿动物群落数量预测中是一种新尝试。Elman神经网络通过在前馈网络中增加延时算子,实现了记忆功能,能够对啮齿动物组成物种数量进行动态模拟和预测。以腾格里沙漠东... 群落的数量变动及预测是生态学研究的重要内容,将神经网络技术应用到啮齿动物群落数量预测中是一种新尝试。Elman神经网络通过在前馈网络中增加延时算子,实现了记忆功能,能够对啮齿动物组成物种数量进行动态模拟和预测。以腾格里沙漠东缘荒漠为试验区,以啮齿动物数量为研究对象,采用标志重捕法,逐月监测2006─2014年每年的4─10月捕获量,建立Elman神经网络预测模型,利用2006─2013年的捕获量建立训练网络,以2014年的数据进行验证与测试,比较3种数据处理方法建立预测模型后的平均误差和拟合度,确立最优模型,预测阿拉善荒漠啮齿动物组成物种数量动态。结果表明:(1)未经归一化处理预测结果的平均误差mse为5.30,最小误差1.52%,拟合度为0.80;(2)经[0,1]归一化处理的预测结果平均误差mse为4.51,最小误差1.54%,拟合度为0.82;(3)经[-1,1]归一化处理预测结果的平均误差mse为5.03,最小误差1.63%,拟合度为0.69;(4)3种归一化处理后Elman神经网络模型差异不显著。通过平均误差和拟合度的比较,文章认为采用[0,1]归一化建立的Elman神经网络能较好的预测荒漠啮齿动物数量的变化规律,应用该网络可以预测阿拉善荒漠啮齿动物组成物种数量变化趋势,对指导当地鼠情监控和防治具有重要意义。 展开更多
关键词 ELMAN神经网络 阿拉善荒漠 啮齿动物 标志重捕法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部