期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BCL-ASA-BP神经网络的模拟电路板芯片故障诊断 被引量:5
1
作者 王力 刘学朋 张亦弛 《电子测量技术》 北大核心 2022年第14期164-171,共8页
针对模拟电路板芯片故障界定标准不明确和实现快速、准确分类困难的问题,本文提出了一种基于双元卷积Logistic原子搜索算法(BCL-ASA)优化BP神经网络(BCL-ASA-BP)的故障诊断模型。首先,对电路板芯片不同状态下的温度进行采集和特征提取,... 针对模拟电路板芯片故障界定标准不明确和实现快速、准确分类困难的问题,本文提出了一种基于双元卷积Logistic原子搜索算法(BCL-ASA)优化BP神经网络(BCL-ASA-BP)的故障诊断模型。首先,对电路板芯片不同状态下的温度进行采集和特征提取,并采用欧氏距离对特征进行融合,建立含有芯片故障界定标准的故障特征模型。接着,利用双元卷积Logistic映射初始化原子搜索算法的种群规模和位置,提高收敛速度和精度。然后,通过BCL-ASA优化BP神经网络寻优过程,获得最优权值和阈值。最后,将芯片故障特征模型输入到BCL-ASA-BP神经网络中进行训练和测试,完成电路板芯片故障诊断。实验采用电源电路板进行可靠性分析,结果表明,BCL-ASA-BP对芯片故障综合诊断准确率可达98.35%,较传统BP算法提升13.9%。 展开更多
关键词 双元卷积Logistic混沌映射 原子搜索算法 BP神经网络 模拟电路板芯片 故障诊断
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部