利用2006年Global emissions data和2011年NCEP Final Analysis资料作为WRF-chem3.0模式的初、边值条件,模拟了2011年4月25日-5月25日南海夏季风爆发前后一个月,区域为70~160°E,0~40°N范围内的季风区海盐、PM10、COx、...利用2006年Global emissions data和2011年NCEP Final Analysis资料作为WRF-chem3.0模式的初、边值条件,模拟了2011年4月25日-5月25日南海夏季风爆发前后一个月,区域为70~160°E,0~40°N范围内的季风区海盐、PM10、COx、SO2、NOx及O3等各种大气化学污染物的三维空间基本分布情况,结果发现在近地面950hPa和400hPa高度附近,由季风爆发引起的南海地区偏西和偏南风分量加强等风场形势的改变,导致了相应各种污染物浓度在分布上的较大变化,尤其在南海地区,由于出现较强风场辐合导致该地区的污染物浓度明显高于其它区域。还发现在垂直方向上,各种污染物的分布都分别受到了由季风爆发期间引起的偏西和偏南风分量变化的影响较明显。同时,季风爆发前陆地上的污染物浓度明显大于海洋上的污染物浓度,而随着季风爆发,大部分污染物的这种海陆浓度差异会大幅减小。展开更多
在南海台风模式(Tropical Regional Assimilation Model for the South China Sea,TRAMS)2.0版本基础上,从模式分辨率、动力框架、物理过程三个方面进行技术改进,形成了TRAMS 3.0版本。对2017年的台风预报进行评估,结果表明TRAMS 3.0模...在南海台风模式(Tropical Regional Assimilation Model for the South China Sea,TRAMS)2.0版本基础上,从模式分辨率、动力框架、物理过程三个方面进行技术改进,形成了TRAMS 3.0版本。对2017年的台风预报进行评估,结果表明TRAMS 3.0模式比TRAMS 2.0模式有明显改进,其中72 h的平均路径误差减少了13.6 km(改进幅度为7%),强度预报误差减少了1.2 hPa(改进幅度为10.5%)。另外对于高空气象要素的预报,TRAMS 3.0模式也比TRAMS 2.0有全面的改进。分别对各项技术更新的效果进行敏感性测试,发现提高模式分辨率和更新对流参数化方案对TRAMS 3.0模式中南海台风预报效果的改进贡献最大。展开更多
文摘利用2006年Global emissions data和2011年NCEP Final Analysis资料作为WRF-chem3.0模式的初、边值条件,模拟了2011年4月25日-5月25日南海夏季风爆发前后一个月,区域为70~160°E,0~40°N范围内的季风区海盐、PM10、COx、SO2、NOx及O3等各种大气化学污染物的三维空间基本分布情况,结果发现在近地面950hPa和400hPa高度附近,由季风爆发引起的南海地区偏西和偏南风分量加强等风场形势的改变,导致了相应各种污染物浓度在分布上的较大变化,尤其在南海地区,由于出现较强风场辐合导致该地区的污染物浓度明显高于其它区域。还发现在垂直方向上,各种污染物的分布都分别受到了由季风爆发期间引起的偏西和偏南风分量变化的影响较明显。同时,季风爆发前陆地上的污染物浓度明显大于海洋上的污染物浓度,而随着季风爆发,大部分污染物的这种海陆浓度差异会大幅减小。
文摘在南海台风模式(Tropical Regional Assimilation Model for the South China Sea,TRAMS)2.0版本基础上,从模式分辨率、动力框架、物理过程三个方面进行技术改进,形成了TRAMS 3.0版本。对2017年的台风预报进行评估,结果表明TRAMS 3.0模式比TRAMS 2.0模式有明显改进,其中72 h的平均路径误差减少了13.6 km(改进幅度为7%),强度预报误差减少了1.2 hPa(改进幅度为10.5%)。另外对于高空气象要素的预报,TRAMS 3.0模式也比TRAMS 2.0有全面的改进。分别对各项技术更新的效果进行敏感性测试,发现提高模式分辨率和更新对流参数化方案对TRAMS 3.0模式中南海台风预报效果的改进贡献最大。