开展了入射脉冲激光能量密度对纳秒脉冲激光辐照CMOS(complementary metal oxide semiconductor)光电探测器的感光面(二氧化硅层/硅层交界面)处热应力的影响研究。建立了CMOS光电探测器的仿真几何结构模型,基于傅里叶热传导方程及热力...开展了入射脉冲激光能量密度对纳秒脉冲激光辐照CMOS(complementary metal oxide semiconductor)光电探测器的感光面(二氧化硅层/硅层交界面)处热应力的影响研究。建立了CMOS光电探测器的仿真几何结构模型,基于傅里叶热传导方程及热力耦合方程组对纳秒脉冲激光辐照下CMOS光电探测器感光面中心点温升和热应力进行了仿真计算,并对入射脉冲激光能量密度对温升时间演化过程以及热应力的空间分布进行了探讨。仿真计算结果表明,随着入射脉冲激光能量密度增大,CMOS光电探测器的感光面处峰值温度增加以及热应力增大。在纳秒脉冲激光辐照CMOS光电探测器时,感光面处存在的拉应力使CMOS光电探测器先发生力学损伤,随着激光能量密度增大,再发生热学损伤。研究结果对于纳秒脉冲激光诱导CMOS光电探测器损伤机制以及损伤效果的研究具有一定的理论支持。展开更多
文摘开展了入射脉冲激光能量密度对纳秒脉冲激光辐照CMOS(complementary metal oxide semiconductor)光电探测器的感光面(二氧化硅层/硅层交界面)处热应力的影响研究。建立了CMOS光电探测器的仿真几何结构模型,基于傅里叶热传导方程及热力耦合方程组对纳秒脉冲激光辐照下CMOS光电探测器感光面中心点温升和热应力进行了仿真计算,并对入射脉冲激光能量密度对温升时间演化过程以及热应力的空间分布进行了探讨。仿真计算结果表明,随着入射脉冲激光能量密度增大,CMOS光电探测器的感光面处峰值温度增加以及热应力增大。在纳秒脉冲激光辐照CMOS光电探测器时,感光面处存在的拉应力使CMOS光电探测器先发生力学损伤,随着激光能量密度增大,再发生热学损伤。研究结果对于纳秒脉冲激光诱导CMOS光电探测器损伤机制以及损伤效果的研究具有一定的理论支持。