期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征选择的GS-KCV-XGBoost露天金属矿爆破块度预测模型
1
作者 赵颖 岳中文 +3 位作者 薛克军 陈佳瑶 蒋昊洋 王鹏 《工程爆破》 CSCD 北大核心 2024年第6期168-177,共10页
为准确预测爆破块度,通过随机森林算法和皮尔逊相关性分析筛选出了影响爆破块度的关键因素,再输入到利用网格搜索法(GS)和K折交叉验证法(KCV)寻优处理后的极端梯度提升树(XGBoost)算法中,建立了一种基于特征选择的GS-KCV-XGBoost岩石爆... 为准确预测爆破块度,通过随机森林算法和皮尔逊相关性分析筛选出了影响爆破块度的关键因素,再输入到利用网格搜索法(GS)和K折交叉验证法(KCV)寻优处理后的极端梯度提升树(XGBoost)算法中,建立了一种基于特征选择的GS-KCV-XGBoost岩石爆破块度预测模型。研究结果表明:本模型比常见的随机森林回归模型、GS-XGB模型和GS-SVM模型预测效果更优,模型可靠性高,将本模型应用到实际工程中,得到的预测值和真实值相近,R^(2)为0.95、MAE为7.961、RMSE为13.596,能实现爆破块度的爆前预测,有较高的工程应用价值。 展开更多
关键词 爆破块度预测 极端梯度提升树 特征选择 网格搜索 K折交叉验证
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部