We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociat...We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.展开更多
基金This work was supported by the Natural Science Foundation of Changzhou Institute of Technology (No.YN1507), Undergraduate Training Program for Innovation of Changzhou Institute of Technology (No.J150245), the China Postdoctoral Science Foundation (No.2013M531506), the National Natural Science Foundation of China (No.21273212).
文摘We report on the photodissociation dynamics of CO2^+ via its A2Пu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected A2Hu,1/2(Vl,V2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2^+, the dissociation mechanism of CO2^+ is discussed. The conformational variation of CO2^+ from linear to bent on the photodissociation dynamics of CO2^+ is verified.