The mechanism of the proton_transfer_coupled electron transfer (PT_ET) reactions between the menaquinone Q A (MQ 1) and ubiquinone Q B (UQ 1) in the bacterial photosynthetic reaction center of Rhodopseudomona vi...The mechanism of the proton_transfer_coupled electron transfer (PT_ET) reactions between the menaquinone Q A (MQ 1) and ubiquinone Q B (UQ 1) in the bacterial photosynthetic reaction center of Rhodopseudomona viridis was studied by using the B3LYP/6_31G(d) method. The changes of standard Gibbs free energy ΔG 0 of all possible reactions followed the ET reaction (1) were calculated. The results indicated that: (1) according to the ΔG 0 values of corresponding reactions, UQ 1 could not accept two electrons from MQ - 1 continually without the coupled proton transfer reactions. Because of ΔG 0 2b 0, ΔG 0 3b 0 and ΔG 0 4b 0, the corresponding PT_ET reactions could take place along with reactions (2b), (3b) and (4b) sequentially; (2) on the gaseous condition, the first and second transferred protons (H +(1) and H +(2)) from the surrounding amino acid residues or water molecules will combine with the oxygen No.7 and oxygen No.8 of UQ 1, respectively. On the condition of protein surroundings (by SCRF model, ε =4.0), the results are converse but the energy difference between the combination of H +(1) and H +(2) with UQ - 1 is quite small. The difference of ΔG 0 values between the corresponding reactions in gaseous surroundings and the SCRF model is not significant; (3) the PT_ET reactions between MQ 1 - and UQ 1 - should be as follows: MQ 1 -+UQ 1→MQ 1+UQ 1 - (1) UQ 1 - ( O (7) )+H +( HisL 190)→UQ 1H(2b) ( Gas ) or UQ 1 - ( O (8) )+H +(H 2O)→UQ 1H (2b') ( SCRF ) or UQ 1 - ( O (8) )+H + ( ArgL 217)→UQ 1H(2b') ( SCRF ) MQ 1 -+UQ 1H→MQ 1+UQ 1H - (3b) ( Gas ) MQ 1 -+UQ 1H→MQ 1+UQ 1H -(3b') ( SCR F) UQ 1H -+H +(H 2O)→UQ 1H 2(4b) ( Gas ) or UQ 1H -+H + ( ArgL 217)→UQ 1H 2 (4b) ( Gas ) or UQ 1H -+H + ( HisL 190)→UQ 1H 2 (4b') ( SCRF )展开更多
The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by...The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by absorption spectra, low temperature steady_state fluorescence spectroscopy and single photon counting measurement under the same conditions. The absorption spectra at room temperature for the spinach and water hyacinth chloroplasts are similar, which show that different plants can efficiently absorb light of same wavelength. The low temperature steady_state fluorescence spectroscopy for the water hyacinth chloroplast reveals a poor balance of photon quantum between two photosystems. The fluorescence decays in PSⅡ measured at the natural Q A state for the chloroplasts have been fitted by a three_exponential kinetic model. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PSⅡ and the middle lifetime component to the delay fluorescence of recombination of P + 680 and Pheo -. The excited energy conversion efficiency (η) in PSⅡ RC is 87% and 91% respectively for the water hyacinth and spinach chloroplasts calculated on the 20 ps model. This interesting result is not consistent with what is assumed that the efficiency is 100% in PSⅡ RC. The results in this paper also present a support for the 20 ps electron transfer time constant in PSⅡ RC. On the viewpoint of excitation energy conversion efficiency, the growing rate for the water hyacinth plan is smaller than that for the spinach plant. But, authors' results show those plants can perform highly efficient transfer of photo_excitation energy from the light_harvesting pigment system to the reaction center (approximately 100%).展开更多
文摘The mechanism of the proton_transfer_coupled electron transfer (PT_ET) reactions between the menaquinone Q A (MQ 1) and ubiquinone Q B (UQ 1) in the bacterial photosynthetic reaction center of Rhodopseudomona viridis was studied by using the B3LYP/6_31G(d) method. The changes of standard Gibbs free energy ΔG 0 of all possible reactions followed the ET reaction (1) were calculated. The results indicated that: (1) according to the ΔG 0 values of corresponding reactions, UQ 1 could not accept two electrons from MQ - 1 continually without the coupled proton transfer reactions. Because of ΔG 0 2b 0, ΔG 0 3b 0 and ΔG 0 4b 0, the corresponding PT_ET reactions could take place along with reactions (2b), (3b) and (4b) sequentially; (2) on the gaseous condition, the first and second transferred protons (H +(1) and H +(2)) from the surrounding amino acid residues or water molecules will combine with the oxygen No.7 and oxygen No.8 of UQ 1, respectively. On the condition of protein surroundings (by SCRF model, ε =4.0), the results are converse but the energy difference between the combination of H +(1) and H +(2) with UQ - 1 is quite small. The difference of ΔG 0 values between the corresponding reactions in gaseous surroundings and the SCRF model is not significant; (3) the PT_ET reactions between MQ 1 - and UQ 1 - should be as follows: MQ 1 -+UQ 1→MQ 1+UQ 1 - (1) UQ 1 - ( O (7) )+H +( HisL 190)→UQ 1H(2b) ( Gas ) or UQ 1 - ( O (8) )+H +(H 2O)→UQ 1H (2b') ( SCRF ) or UQ 1 - ( O (8) )+H + ( ArgL 217)→UQ 1H(2b') ( SCRF ) MQ 1 -+UQ 1H→MQ 1+UQ 1H - (3b) ( Gas ) MQ 1 -+UQ 1H→MQ 1+UQ 1H -(3b') ( SCR F) UQ 1H -+H +(H 2O)→UQ 1H 2(4b) ( Gas ) or UQ 1H -+H + ( ArgL 217)→UQ 1H 2 (4b) ( Gas ) or UQ 1H -+H + ( HisL 190)→UQ 1H 2 (4b') ( SCRF )
文摘The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by absorption spectra, low temperature steady_state fluorescence spectroscopy and single photon counting measurement under the same conditions. The absorption spectra at room temperature for the spinach and water hyacinth chloroplasts are similar, which show that different plants can efficiently absorb light of same wavelength. The low temperature steady_state fluorescence spectroscopy for the water hyacinth chloroplast reveals a poor balance of photon quantum between two photosystems. The fluorescence decays in PSⅡ measured at the natural Q A state for the chloroplasts have been fitted by a three_exponential kinetic model. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PSⅡ and the middle lifetime component to the delay fluorescence of recombination of P + 680 and Pheo -. The excited energy conversion efficiency (η) in PSⅡ RC is 87% and 91% respectively for the water hyacinth and spinach chloroplasts calculated on the 20 ps model. This interesting result is not consistent with what is assumed that the efficiency is 100% in PSⅡ RC. The results in this paper also present a support for the 20 ps electron transfer time constant in PSⅡ RC. On the viewpoint of excitation energy conversion efficiency, the growing rate for the water hyacinth plan is smaller than that for the spinach plant. But, authors' results show those plants can perform highly efficient transfer of photo_excitation energy from the light_harvesting pigment system to the reaction center (approximately 100%).