为了减少神经网络模型对手写数字数据集的训练计算耗时和最佳训练次数,同时保证手写数字图像的分类准确率,引入了压缩感知技术,提出了基于压缩感知和单隐层前馈网络(Compressive Sensing and Single Hidden Layer Feed⁃forward Network,...为了减少神经网络模型对手写数字数据集的训练计算耗时和最佳训练次数,同时保证手写数字图像的分类准确率,引入了压缩感知技术,提出了基于压缩感知和单隐层前馈网络(Compressive Sensing and Single Hidden Layer Feed⁃forward Network,CS-SHLNet)的手写数字图像快速分类算法。首先,利用高斯随机矩阵对具有稀疏性的手写数字图像进行线性观测,将高维图像信号投影到低维空间得到观测值;其次,通过误差反向传播(Error BackPropagation,BP)算法不断调整单隐层前馈网络权值建立适应于观测值的神经网络模型,将观测值嵌入神经网络中对图像进行特征提取;最后,采用单隐层前馈网络模型对手写数字进行图像分类,以训练计算耗时、最佳训练次数和分类准确率等指标对模型进行定量评估。实验结果表明:相比较单隐层神经网络和深度学习对MNIST手写数字数据集的高维图像信号图像分类,先通过CS技术利用观测数M=235的高斯随机矩阵线性观测得到图像的观测值,再利用单隐层前馈网络对观测值进行图像分类,网络模型的训练计算耗时缩短为13.05 s,最佳训练次数缩短为3次,分类准确率保持97.5%。该算法中的压缩感知线性观测可以有效减少神经网络模型对手写数字数据集的训练计算耗时和最佳训练次数,而且可以保证分类准确率。展开更多
文摘基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一种改进的YOLOX-s(Improved You Only Look Once-s,IM-YOLO-s)算法。在特征提取阶段,引入CA位置注意力模块,分别从高度与宽度两个方向对目标信息的位置进行权重分配,提高了模型的检测精度;在特征融合阶段,将BiFPN加权特征融合算法应用到IM-YOLO-s的颈部结构,进一步提升了小目标船只检测精度;在模型优化训练阶段,以CIoU损失替代IoU损失、以变焦损失替代置信度损失、调整类别损失权重,增大了正样本分布密集区域的训练权重,减少了密集分布船只的漏检率。另外,在HRSC2016数据集的基础上增加额外的离岸中小舰船图像,自建了HRSC2016-Gg数据集,HRSC2016-Gg数据集增强了海上船只及中小像素船只检测时的鲁棒性。通过数据集HRSC2016-Gg评测算法性能,实验结果表明:IM-YOLO-s对于SORS场景舰船检测的召回率为97.18%,AP@0.5为96.77%,F1值为0.95,较原YOLOX-s算法分别提高了2.23%,2.40%和0.01。这充分表明该算法可以对SORS复杂背景图像进行高质量舰船检测。
文摘为了减少神经网络模型对手写数字数据集的训练计算耗时和最佳训练次数,同时保证手写数字图像的分类准确率,引入了压缩感知技术,提出了基于压缩感知和单隐层前馈网络(Compressive Sensing and Single Hidden Layer Feed⁃forward Network,CS-SHLNet)的手写数字图像快速分类算法。首先,利用高斯随机矩阵对具有稀疏性的手写数字图像进行线性观测,将高维图像信号投影到低维空间得到观测值;其次,通过误差反向传播(Error BackPropagation,BP)算法不断调整单隐层前馈网络权值建立适应于观测值的神经网络模型,将观测值嵌入神经网络中对图像进行特征提取;最后,采用单隐层前馈网络模型对手写数字进行图像分类,以训练计算耗时、最佳训练次数和分类准确率等指标对模型进行定量评估。实验结果表明:相比较单隐层神经网络和深度学习对MNIST手写数字数据集的高维图像信号图像分类,先通过CS技术利用观测数M=235的高斯随机矩阵线性观测得到图像的观测值,再利用单隐层前馈网络对观测值进行图像分类,网络模型的训练计算耗时缩短为13.05 s,最佳训练次数缩短为3次,分类准确率保持97.5%。该算法中的压缩感知线性观测可以有效减少神经网络模型对手写数字数据集的训练计算耗时和最佳训练次数,而且可以保证分类准确率。