NoSQL系统因其高性能、高可扩展性的优势在大数据管理中得到广泛应用,而key-value(KV)模型则是NoSQL系统中使用最广泛的一种存储模型.KV型本地存储系统对于以机械磁盘为持久化存储的情形,存在许多性能优化技术,但这些优化技术面对当前...NoSQL系统因其高性能、高可扩展性的优势在大数据管理中得到广泛应用,而key-value(KV)模型则是NoSQL系统中使用最广泛的一种存储模型.KV型本地存储系统对于以机械磁盘为持久化存储的情形,存在许多性能优化技术,但这些优化技术面对当前的硬件发展新趋势,如多核处理器、大内存和低延迟闪存、非易失性内存NVM(Non-Volatile Memory)等,难以充分发挥新硬件的优势,如数据索引、并发控制、事务日志管理等技术在多核架构下存在多核扩展性问题,又如数据存储策略不适应闪存SSD(Solid State Drive)的新存储特性而产生了IO利用率低效的问题.针对多核处理器、大内存和闪存、NVM等硬件发展新趋势,文中面向当前的大数据应用背景,综述了KV型本地存储系统在索引技术、并发控制、事务日志管理和数据放置等核心模块上的最新优化技术和系统研究成果.从处理器、内存和持久化存储的角度概括了KV型本地存储系统当前存在的最优技术,总结了当前研究尚未解决的技术挑战,并对KV型本地存储系统在CPU缓存高效性、事务日志扩展性和高可用性等方面的研究进行了展望.展开更多
随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交...随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交换机制由于慢速磁盘的读写速度限制,无法被广泛应用.近年来,得益于超低延迟固态硬盘(solid state drive,SSD)的快速发展,页交换机制可以利用其低延迟的读写特性,提升页交换效率.然而,在低I/O延迟的情况下,传统页交换机制的I/O栈存在巨大的软件开销.首先对使用超低延迟SSD的Linux页交换机制进行测试与分析,发现现有页交换机制的主要瓶颈在于发送请求时存在队头阻塞问题、I/O合并和调度开销,以及内核返回路径上的中断处理和直接内存回收开销.基于分析结果,提出基于超低延迟SSD的页交换机制Ultraswap.Ultraswap在Linux I/O栈的基础上增加对轮询请求的处理,并降低I/O合并与调度开销,实现轻量级的I/O栈.基于Ultraswap的I/O栈,对内核页交换机制的换入与换出路径进一步优化.通过优化对缺页、直接内存回收的处理,降低页交换机制关键路径上的时间开销.实验结果表明Ultraswap在应用测试场景下相比Linux页交换机制能够提升19%的平均性能;在可使用内存比例为20%的情况下,Ultraswap可达到33%的性能提升.展开更多
数据中心的高投入和低资源利用率一直是云服务提供商关注的问题.面对这个难题,直接的解决方案是在同等资源上混合部署更多的应用以提高资源使用效率.然而,由于混部应用对共享资源的竞争导致了应用间的性能干扰,从而影响了应用的性能、...数据中心的高投入和低资源利用率一直是云服务提供商关注的问题.面对这个难题,直接的解决方案是在同等资源上混合部署更多的应用以提高资源使用效率.然而,由于混部应用对共享资源的竞争导致了应用间的性能干扰,从而影响了应用的性能、服务质量(quality of service,QoS)和用户满意度,因此如何保障应用的性能已成为混部场景下的关键问题.着重从应用和集群特征分析(基础)、干扰检测(前提)、单节点资源分配(微观层面策略)和集群作业调度(宏观层面策略)4个方面阐述多应用混部性能保障的相关背景、挑战和关键技术.在不同的混部场景下,由于应用和集群特征等不同,性能保障工作所面临的挑战和问题复杂度也各异,例如单位资源上混合部署的应用数量会直接影响到搜索资源空间的时间开销,应用的运行方式会影响到共享资源的竞争强度.因此,从问题复杂度角度出发,从应用和集群特征、资源干扰维度和混部应用个数3个维度对相关研究工作面临的挑战进行讨论和分析.探讨了面向高密度混部场景应用性能保障方法的发展方向和挑战,认为全栈式的软硬件协同方法是保障高密度混部下应用性能的趋势,该方法有助于全面地提升应用性能的可靠性和数据中心的资源利用率.展开更多
文摘NoSQL系统因其高性能、高可扩展性的优势在大数据管理中得到广泛应用,而key-value(KV)模型则是NoSQL系统中使用最广泛的一种存储模型.KV型本地存储系统对于以机械磁盘为持久化存储的情形,存在许多性能优化技术,但这些优化技术面对当前的硬件发展新趋势,如多核处理器、大内存和低延迟闪存、非易失性内存NVM(Non-Volatile Memory)等,难以充分发挥新硬件的优势,如数据索引、并发控制、事务日志管理等技术在多核架构下存在多核扩展性问题,又如数据存储策略不适应闪存SSD(Solid State Drive)的新存储特性而产生了IO利用率低效的问题.针对多核处理器、大内存和闪存、NVM等硬件发展新趋势,文中面向当前的大数据应用背景,综述了KV型本地存储系统在索引技术、并发控制、事务日志管理和数据放置等核心模块上的最新优化技术和系统研究成果.从处理器、内存和持久化存储的角度概括了KV型本地存储系统当前存在的最优技术,总结了当前研究尚未解决的技术挑战,并对KV型本地存储系统在CPU缓存高效性、事务日志扩展性和高可用性等方面的研究进行了展望.
文摘随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交换机制由于慢速磁盘的读写速度限制,无法被广泛应用.近年来,得益于超低延迟固态硬盘(solid state drive,SSD)的快速发展,页交换机制可以利用其低延迟的读写特性,提升页交换效率.然而,在低I/O延迟的情况下,传统页交换机制的I/O栈存在巨大的软件开销.首先对使用超低延迟SSD的Linux页交换机制进行测试与分析,发现现有页交换机制的主要瓶颈在于发送请求时存在队头阻塞问题、I/O合并和调度开销,以及内核返回路径上的中断处理和直接内存回收开销.基于分析结果,提出基于超低延迟SSD的页交换机制Ultraswap.Ultraswap在Linux I/O栈的基础上增加对轮询请求的处理,并降低I/O合并与调度开销,实现轻量级的I/O栈.基于Ultraswap的I/O栈,对内核页交换机制的换入与换出路径进一步优化.通过优化对缺页、直接内存回收的处理,降低页交换机制关键路径上的时间开销.实验结果表明Ultraswap在应用测试场景下相比Linux页交换机制能够提升19%的平均性能;在可使用内存比例为20%的情况下,Ultraswap可达到33%的性能提升.
文摘数据中心的高投入和低资源利用率一直是云服务提供商关注的问题.面对这个难题,直接的解决方案是在同等资源上混合部署更多的应用以提高资源使用效率.然而,由于混部应用对共享资源的竞争导致了应用间的性能干扰,从而影响了应用的性能、服务质量(quality of service,QoS)和用户满意度,因此如何保障应用的性能已成为混部场景下的关键问题.着重从应用和集群特征分析(基础)、干扰检测(前提)、单节点资源分配(微观层面策略)和集群作业调度(宏观层面策略)4个方面阐述多应用混部性能保障的相关背景、挑战和关键技术.在不同的混部场景下,由于应用和集群特征等不同,性能保障工作所面临的挑战和问题复杂度也各异,例如单位资源上混合部署的应用数量会直接影响到搜索资源空间的时间开销,应用的运行方式会影响到共享资源的竞争强度.因此,从问题复杂度角度出发,从应用和集群特征、资源干扰维度和混部应用个数3个维度对相关研究工作面临的挑战进行讨论和分析.探讨了面向高密度混部场景应用性能保障方法的发展方向和挑战,认为全栈式的软硬件协同方法是保障高密度混部下应用性能的趋势,该方法有助于全面地提升应用性能的可靠性和数据中心的资源利用率.