期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最小先验知识的自监督学习方法
1
作者 朱俊屹 常雷雷 +3 位作者 徐晓滨 郝智勇 于海跃 姜江 《计算机应用》 2025年第4期1035-1041,共7页
为了弥补有监督学习对监督信息要求过高的不足,提出一种基于最小先验知识的自监督学习方法。首先,基于数据的先验知识聚类无标签数据,或基于有标签数据的中心距离为无标签数据生成初始标签;其次,随机抽取赋予标签后的数据,并选择机器学... 为了弥补有监督学习对监督信息要求过高的不足,提出一种基于最小先验知识的自监督学习方法。首先,基于数据的先验知识聚类无标签数据,或基于有标签数据的中心距离为无标签数据生成初始标签;其次,随机抽取赋予标签后的数据,并选择机器学习方法建立子模型;再次,计算各个数据抽取的权重和误差,以求得数据平均误差作为各个数据集的数据标签度,并根据初始数据标签度设置迭代阈值;最后,比较迭代过程中数据标签度的大小和阈值决定是否达到终止条件。在10个UCI公开数据集上的实验结果表明,相较于无监督学习K-means等方法、有监督学习支持向量机(SVM)等算法和主流自监督学习TabNet(Tabular Network)等方法,所提方法在不平衡数据集不使用标签,或在平衡数据集上使用有限标签时仍可以取得较高的分类准确度。 展开更多
关键词 最小先验知识 自监督学习 机器学习 数据标签度 迭代阈值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部