期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合路径HMC的分子树空间采样方法
1
作者 李晓鹏 凌诚 高敬阳 《计算机科学》 CSCD 北大核心 2023年第12期322-329,共8页
随着现代分子序列数据越来越丰富,描述物种间历史关系的树状拓扑空间也急剧扩大,系统发育树的可靠推断仍面临着巨大挑战。近年来,马尔可夫链蒙特卡洛算法(MCMC)家族中最先进的哈密顿马尔可夫蒙特卡洛(HMC)算法被证明可以应用于系统发育... 随着现代分子序列数据越来越丰富,描述物种间历史关系的树状拓扑空间也急剧扩大,系统发育树的可靠推断仍面临着巨大挑战。近年来,马尔可夫链蒙特卡洛算法(MCMC)家族中最先进的哈密顿马尔可夫蒙特卡洛(HMC)算法被证明可以应用于系统发育分析,可以避免传统MCMC算法中存在的大量随机游走行为,加快马氏链的混合。但在更为复杂的多模态发育树空间中,HMC算法无法通过从其他模式中获得提议来逃离局部的高概率区域,为了提升算法的健壮性,文中提出了一种混合路径哈密顿马尔可夫蒙特卡洛(MPHMC)的优化方法。在不增加额外的计算成本的情况下,所提算法采样路径中添加针对离散参数的非HMC更新组件,与HMC确定性更新交替进行,进而在树空间中引入了拓扑变化更大的分支重排策略,能更自由地遍历整个后验分布的树空间。在5组经验数据集上进行实验,结果证明,MPHMC方法能更好地从正确的后验分布中采样;在比较难采样的大数据集上运行时,HMC单一路径的采样算法可能会失效,而MPHMC方法能获得比使用广泛的系统发育分析工具Mrbayes(MCMC)高14%以上的采样效率。 展开更多
关键词 MRBAYES 树空间 哈密顿马尔可夫蒙特卡洛(HMC) 多模态后验分布 混合路径
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部