期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于WT-HBBO-RBF模型的年径流时间序列预测 被引量:3
1
作者 徐成贵 崔东文 《水力发电》 CAS 2023年第4期17-22,95,共7页
利用4个基准函数对HBBO进行仿真测试;采用WT分解处理年径流时序数据;通过突变点检测方法Mann-Kendal(M-K)划分训练、预测样本,构建RBF适应度函数,利用HBBO优化RBF神经网络输出层权值、基函数中心和隐含层节点宽度,建立WT-HBBO-RBF模型,... 利用4个基准函数对HBBO进行仿真测试;采用WT分解处理年径流时序数据;通过突变点检测方法Mann-Kendal(M-K)划分训练、预测样本,构建RBF适应度函数,利用HBBO优化RBF神经网络输出层权值、基函数中心和隐含层节点宽度,建立WT-HBBO-RBF模型,并构建WT-HBBO-SVM、WT-HBBO-BP、WT-RBF、WT-SVM、WT-BP、HBBO-RBF、HBBO-SVM、HBBO-BP作为对比分析模型。以云南省龙潭站、落却站年径流时间序列预测实例对模型进行验证的结果表明,HBBO具有较好的寻优精度及全局搜索能力;WT-HBBO-RBF模型对龙潭站、落却站年径流时间序列预测误差小于其他对比模型,具有较好的预测精度和泛化能力;HBBO能有效优化RBF神经网络输出层权值、基函数中心和隐含层节点宽度,提高RBF神经网络预测性能;WT能科学降低径流序列的复杂性,提高预测精度。 展开更多
关键词 年径流预测 小波变换(WT) 人类行为优化(HBBO)算法 径向基函数(RBF)神经网络 仿真测试 参数优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部