面对日益严重的分布式拒绝服务(distributed denial of service,DDoS)攻击威胁和众多防护措施,需要防护绩效评估方法指导防护措施的选择.现有绩效评估方法通过对比防护措施部署前后的攻击效果进行评估,需对防护措施进行卸载及重新部署,...面对日益严重的分布式拒绝服务(distributed denial of service,DDoS)攻击威胁和众多防护措施,需要防护绩效评估方法指导防护措施的选择.现有绩效评估方法通过对比防护措施部署前后的攻击效果进行评估,需对防护措施进行卸载及重新部署,实施成本高.针对这种不足,首先建立了防护绩效评估模型(defence evaluation model,DEM),该模型从用户感受角度进行指标选取,减少了传统方式下测评过程需要的指标数量,降低了数据获取的难度.利用神经网络良好的泛化能力,将其引入DDoS防护绩效评估过程;在计算已部署防护措施攻击效果的同时,预测得到未部署防护措施时的攻击效果,减少了测量次数.使用网络仿真程序SSFNet模拟典型攻击场景进行实验,验证了提出的评估方法以及神经网络的预测能力.展开更多
随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中...随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中的虚假信息和不法行为,从而保证网络环境的安全性和公平性。现有的关联用户挖掘方法仅考虑了用户属性或用户关系信息,未对网络中含有的多类信息进行有效融合以及综合考虑。此外,大多数方法借鉴其他领域的方法进行研究,如去匿名化问题,这些方法不能准确解决关联用户挖掘问题。为此,文中针对网络关联用户挖掘问题,提出了基于多信息融合表示学习的关联用户挖掘算法(Associated Users Mining Algorithm based on Multi-information fusion Representation Learning,AUMA-MRL)。该算法使用网络表示学习的思想对网络中多种不同维度的信息(如用户属性、网络拓扑结构等)进行学习,并将学习得到的表示进行有效融合,从而得到多信息融合的节点嵌入。这些嵌入可以准确表征网络中的多类信息,基于习得的节点嵌入构造相似性向量,从而对网络中的关联用户进行挖掘。文中基于3个真实网络数据对所提算法进行验证,实验网络数据包括蛋白质网络PPI以及社交网络Flickr和Facebook,使用关联用户挖掘结果的精度和召回率作为性能评价指标对所提算法进行有效性验证。结果表明,与现有经典算法相比,所提算法的召回率平均提高了17.5%,能够对网络中的关联用户进行有效挖掘。展开更多
文摘随着互联网技术的迅速发展和普及,越来越多的用户开始通过社会网络进行各种信息的分享与交流。网络中同一用户可能申请多个不同账号进行信息发布,这些账号构成了网络中的关联用户。准确、有效地挖掘社会网络中的关联用户能够抑制网络中的虚假信息和不法行为,从而保证网络环境的安全性和公平性。现有的关联用户挖掘方法仅考虑了用户属性或用户关系信息,未对网络中含有的多类信息进行有效融合以及综合考虑。此外,大多数方法借鉴其他领域的方法进行研究,如去匿名化问题,这些方法不能准确解决关联用户挖掘问题。为此,文中针对网络关联用户挖掘问题,提出了基于多信息融合表示学习的关联用户挖掘算法(Associated Users Mining Algorithm based on Multi-information fusion Representation Learning,AUMA-MRL)。该算法使用网络表示学习的思想对网络中多种不同维度的信息(如用户属性、网络拓扑结构等)进行学习,并将学习得到的表示进行有效融合,从而得到多信息融合的节点嵌入。这些嵌入可以准确表征网络中的多类信息,基于习得的节点嵌入构造相似性向量,从而对网络中的关联用户进行挖掘。文中基于3个真实网络数据对所提算法进行验证,实验网络数据包括蛋白质网络PPI以及社交网络Flickr和Facebook,使用关联用户挖掘结果的精度和召回率作为性能评价指标对所提算法进行有效性验证。结果表明,与现有经典算法相比,所提算法的召回率平均提高了17.5%,能够对网络中的关联用户进行有效挖掘。