优化农田水氮管理措施可为实现粮食高产、资源高效及环境友好的目标提供科学依据。该研究以华北平原泰安地区为例,利用农田生态系统水热碳氮过程耦合模型(soil water heat carbon and nitrogen simulator,WHCNS)分别对冬小麦季设置的16...优化农田水氮管理措施可为实现粮食高产、资源高效及环境友好的目标提供科学依据。该研究以华北平原泰安地区为例,利用农田生态系统水热碳氮过程耦合模型(soil water heat carbon and nitrogen simulator,WHCNS)分别对冬小麦季设置的165个水肥组合和夏玉米季设置的55个水肥组合进行了情景模拟分析,在综合考虑农学、环境和经济效益的基础上,采用密切值法优化了农田水肥管理方案。结果表明:受到华北地区年内降雨分配不均的影响,冬小麦产量随着灌水量的增加呈先增加后稳定的趋势;而夏玉米产量与灌水量没有明显的关系。冬小麦和夏玉米产量均随着施肥量的增加而增加,后保持稳定。水分渗漏和氮素淋洗量均随着灌水量或施肥量的增加而显著增加。在研究区作物秸秆全部还田及高累积氮的条件下,冬小麦季灌水240 mm和施肥60 kg/hm^2(以N计,下同),夏玉米季不灌溉和施肥90 kg/hm^2分别为研究区当年冬小麦季和夏玉米季最佳的水肥管理方案。在所有水肥组合情景中,优化的水肥管理方案不仅能保证冬小麦-夏玉米最大周年产量的97%、具有较高的水氮利用效率和最佳的产投比,而且氮素淋洗和气体损失分别比最大值降低了77%和71%。因此,该方法可以用来优化华北平原农田的水肥管理措施。展开更多
定量描述农田生态系统中土壤水分动态、碳氮循环过程和作物生长发育规律,对水氮资源高效利用、作物生产决策和环境保护具有十分重要的意义。该文在总结前人研究成果的基础上,引用了联合国粮食及农业组织的气象模块、荷兰的PS123作物模...定量描述农田生态系统中土壤水分动态、碳氮循环过程和作物生长发育规律,对水氮资源高效利用、作物生产决策和环境保护具有十分重要的意义。该文在总结前人研究成果的基础上,引用了联合国粮食及农业组织的气象模块、荷兰的PS123作物模型和丹麦的Daisy模型的碳氮循环模块;借鉴了RZWQM和Hydrus-1D的水分溶质运移模块的相关理论,并在其基础上进行了修改与完善,构建了土壤-作物-大气系统水热碳氮耦合模拟模型WHCNS(soil water heat carbon and nitrogen simulation)。该模型以天为步长,考虑了气象条件、作物生物学特性和田间管理驱动。土壤水分入渗和再分布过程分别采用Green-Ampt模型和Richards方程来描述。土壤氮素运移使用对流-弥散方程来描述,源汇项中考虑碳氮循环的各个过程(有机质矿化、生物固持、尿素水解、氨挥发、硝化、反硝化和作物吸收等),在根系吸水吸氮源汇项中引入了补偿性吸收机制。有机质模块完全来自Daisy模型,将有机质库划分为3个快库和3个慢库。利用改进的荷兰PS123模型实现了作物生长发育进程、干物质生产、干物质分配及作物产量的模拟,通过水氮胁迫校准因子来实现水氮限制下作物产量的模拟。最后应用华北地区(山东泰安)冬小麦-夏玉米轮作体系2 a的田间观测数据对该模型进行了校验。结果表明,剖面土壤水分和硝态氮浓度、叶面积指数、作物产量与实测值均吻合良好,模拟误差均在合理范围之内,特别是对产量的模拟较好,均方根误差为206-319 kg/hm^2,相关系数为0.90,模型效率值均大于0.75,一致性指数值均大于0.9。WHCNS模型能够较好地模拟土壤水分动态、氮素运移及去向、作物生长发育等过程,表明该模型适用于中国华北地区高度集约化的农田生产系统。展开更多
该研究选用蒸汽爆破油菜秸秆,对其进行羟基磷灰石和KMnO4浸渍处理,再用壳聚糖和NaOH溶液改性所获得的生物质炭改性,以比较表面特性变化和吸附/解吸Cd^2+的特征。结果表明,改性处理可有效地在生物质炭表面负载相应官能团,如羟基磷灰石处...该研究选用蒸汽爆破油菜秸秆,对其进行羟基磷灰石和KMnO4浸渍处理,再用壳聚糖和NaOH溶液改性所获得的生物质炭改性,以比较表面特性变化和吸附/解吸Cd^2+的特征。结果表明,改性处理可有效地在生物质炭表面负载相应官能团,如羟基磷灰石处理使生物质炭表面磷酸盐增多,比表面积提高至225.68m^2/g;而壳聚糖、KMnO4和NaOH处理,则引入了-NH2和-OH、-COOH等酸性含氧官能团。尽管改性生物质炭表面电荷减少,但Cd^2+吸附容量却提高了13%~315%,其吸附行为可用Langmuir等温吸附式拟合,并符合Pseudo second order吸附动力学方程。改性后,生物质炭对Cd^2+的吸附主要为专性吸附,其初始吸附速率提高了65%~379%,而解吸率降低了17%~91%,表明对Cd2+的吸附更快且更加稳定,具有良好的应用潜力。展开更多
通过分析定量化不同肥料管理模式下的农田水氮利用效率和氮素平衡状况,为推荐合理的肥料管理模式提供依据。以连续6年(1992年9月—1998年7月)不同肥料管理模式(传统化肥,T1;有机肥,T2;有机无机配施,T3)的田间试验数据为基础,对土壤-作...通过分析定量化不同肥料管理模式下的农田水氮利用效率和氮素平衡状况,为推荐合理的肥料管理模式提供依据。以连续6年(1992年9月—1998年7月)不同肥料管理模式(传统化肥,T1;有机肥,T2;有机无机配施,T3)的田间试验数据为基础,对土壤-作物系统碳氮水循环过程模型WHCNS进行了校验,应用校验后的模型定量化分析了不同肥料管理模式下的农田氮素淋失、水氮利用效率及氮素平衡。结果表明:3个处理6年的总渗漏量均很大,在1230 mm左右,占总降雨量(无灌溉)的35%~38%,与试验地土壤质地偏砂性有关。3个处理的水分利用效率大小顺序为T3>T1>T2,作物产量的差异是其主要原因,T3处理的作物产量最高而T2处理的作物产量最低。3个处理的氮素利用效率大小顺序为T3>T2>T1,氮素的主要去向是作物吸收和硝态氮淋洗,其中只施化肥处理的氮素淋洗率最大,占氮肥总量的33.6%,有机无机配施处理的氮素淋洗率最低,仅占氮肥总量的23.5%。经过6年轮作后的土壤与初始条件相比,只施用化肥的土壤氮素亏缺严重,达到144 kg N·hm-2,而加入有机肥模式土壤氮素亏缺较小,T2和T3处理分别为55、79 kg N·hm-2。有机无机配施模式在保证作物较高产量的情况下,不仅减小了硝态氮的淋洗,提高了水氮利用效率,而且有利于保持土壤氮素平衡,是3种肥料管理模式中最好的。展开更多
文摘优化农田水氮管理措施可为实现粮食高产、资源高效及环境友好的目标提供科学依据。该研究以华北平原泰安地区为例,利用农田生态系统水热碳氮过程耦合模型(soil water heat carbon and nitrogen simulator,WHCNS)分别对冬小麦季设置的165个水肥组合和夏玉米季设置的55个水肥组合进行了情景模拟分析,在综合考虑农学、环境和经济效益的基础上,采用密切值法优化了农田水肥管理方案。结果表明:受到华北地区年内降雨分配不均的影响,冬小麦产量随着灌水量的增加呈先增加后稳定的趋势;而夏玉米产量与灌水量没有明显的关系。冬小麦和夏玉米产量均随着施肥量的增加而增加,后保持稳定。水分渗漏和氮素淋洗量均随着灌水量或施肥量的增加而显著增加。在研究区作物秸秆全部还田及高累积氮的条件下,冬小麦季灌水240 mm和施肥60 kg/hm^2(以N计,下同),夏玉米季不灌溉和施肥90 kg/hm^2分别为研究区当年冬小麦季和夏玉米季最佳的水肥管理方案。在所有水肥组合情景中,优化的水肥管理方案不仅能保证冬小麦-夏玉米最大周年产量的97%、具有较高的水氮利用效率和最佳的产投比,而且氮素淋洗和气体损失分别比最大值降低了77%和71%。因此,该方法可以用来优化华北平原农田的水肥管理措施。
文摘定量描述农田生态系统中土壤水分动态、碳氮循环过程和作物生长发育规律,对水氮资源高效利用、作物生产决策和环境保护具有十分重要的意义。该文在总结前人研究成果的基础上,引用了联合国粮食及农业组织的气象模块、荷兰的PS123作物模型和丹麦的Daisy模型的碳氮循环模块;借鉴了RZWQM和Hydrus-1D的水分溶质运移模块的相关理论,并在其基础上进行了修改与完善,构建了土壤-作物-大气系统水热碳氮耦合模拟模型WHCNS(soil water heat carbon and nitrogen simulation)。该模型以天为步长,考虑了气象条件、作物生物学特性和田间管理驱动。土壤水分入渗和再分布过程分别采用Green-Ampt模型和Richards方程来描述。土壤氮素运移使用对流-弥散方程来描述,源汇项中考虑碳氮循环的各个过程(有机质矿化、生物固持、尿素水解、氨挥发、硝化、反硝化和作物吸收等),在根系吸水吸氮源汇项中引入了补偿性吸收机制。有机质模块完全来自Daisy模型,将有机质库划分为3个快库和3个慢库。利用改进的荷兰PS123模型实现了作物生长发育进程、干物质生产、干物质分配及作物产量的模拟,通过水氮胁迫校准因子来实现水氮限制下作物产量的模拟。最后应用华北地区(山东泰安)冬小麦-夏玉米轮作体系2 a的田间观测数据对该模型进行了校验。结果表明,剖面土壤水分和硝态氮浓度、叶面积指数、作物产量与实测值均吻合良好,模拟误差均在合理范围之内,特别是对产量的模拟较好,均方根误差为206-319 kg/hm^2,相关系数为0.90,模型效率值均大于0.75,一致性指数值均大于0.9。WHCNS模型能够较好地模拟土壤水分动态、氮素运移及去向、作物生长发育等过程,表明该模型适用于中国华北地区高度集约化的农田生产系统。
文摘该研究选用蒸汽爆破油菜秸秆,对其进行羟基磷灰石和KMnO4浸渍处理,再用壳聚糖和NaOH溶液改性所获得的生物质炭改性,以比较表面特性变化和吸附/解吸Cd^2+的特征。结果表明,改性处理可有效地在生物质炭表面负载相应官能团,如羟基磷灰石处理使生物质炭表面磷酸盐增多,比表面积提高至225.68m^2/g;而壳聚糖、KMnO4和NaOH处理,则引入了-NH2和-OH、-COOH等酸性含氧官能团。尽管改性生物质炭表面电荷减少,但Cd^2+吸附容量却提高了13%~315%,其吸附行为可用Langmuir等温吸附式拟合,并符合Pseudo second order吸附动力学方程。改性后,生物质炭对Cd^2+的吸附主要为专性吸附,其初始吸附速率提高了65%~379%,而解吸率降低了17%~91%,表明对Cd2+的吸附更快且更加稳定,具有良好的应用潜力。
文摘农业生产管理系统模型输入参数多,参数率定过程十分耗时费力,大大限制了其推广应用。该研究以华北平原2 a的冬小麦-夏玉米田间试验观测数据为基础,使用PEST(parameter estimation)参数自动优化工具对土壤-作物-大气系统水热碳氮过程藕合模型(soil water heat carbon and nitrogen simulator,WHCNS)的土壤水力学参数、氮素转化参数和作物遗传参数进行自动寻优,同时计算分析模型参数的相对综合敏感度,并将优化结果与土壤实测水力学参数和试错法的模拟结果进行比较。参数敏感度分析结果表明,18个模型参数的相对综合敏感度较高,其中土壤水力学参数普遍具有较高的敏感度,以饱和含水率敏感度最高;作物参数中,作物生长发育总积温和最大比叶面积具有较高的综合敏感度;而氮素转化参数的敏感度远低于土壤水力学参数和作物参数。评价模型模拟效果的统计性指标(均方根误差、模型效率系数和一致性指数)表明,PEST法比实测水力学参数的模拟精度有所提高,其中土壤含水率、土壤硝态氮含量、作物产量和叶面积指数的均方根误差分别降低了61.8%、23.5%、73.6%和23.3%。同时PEST法比试错法对土壤水分和作物产量的模拟精度也有较大提高,但对土壤氮素和叶面积指数的模拟精度提高不明显。由于该方法大大节约了模型校准时间,在较短的时间内获得了明显高于试错法的模拟精度,因此PEST软件在WHCNS模型参数自动优化中是一个值得推广的工具。
文摘通过分析定量化不同肥料管理模式下的农田水氮利用效率和氮素平衡状况,为推荐合理的肥料管理模式提供依据。以连续6年(1992年9月—1998年7月)不同肥料管理模式(传统化肥,T1;有机肥,T2;有机无机配施,T3)的田间试验数据为基础,对土壤-作物系统碳氮水循环过程模型WHCNS进行了校验,应用校验后的模型定量化分析了不同肥料管理模式下的农田氮素淋失、水氮利用效率及氮素平衡。结果表明:3个处理6年的总渗漏量均很大,在1230 mm左右,占总降雨量(无灌溉)的35%~38%,与试验地土壤质地偏砂性有关。3个处理的水分利用效率大小顺序为T3>T1>T2,作物产量的差异是其主要原因,T3处理的作物产量最高而T2处理的作物产量最低。3个处理的氮素利用效率大小顺序为T3>T2>T1,氮素的主要去向是作物吸收和硝态氮淋洗,其中只施化肥处理的氮素淋洗率最大,占氮肥总量的33.6%,有机无机配施处理的氮素淋洗率最低,仅占氮肥总量的23.5%。经过6年轮作后的土壤与初始条件相比,只施用化肥的土壤氮素亏缺严重,达到144 kg N·hm-2,而加入有机肥模式土壤氮素亏缺较小,T2和T3处理分别为55、79 kg N·hm-2。有机无机配施模式在保证作物较高产量的情况下,不仅减小了硝态氮的淋洗,提高了水氮利用效率,而且有利于保持土壤氮素平衡,是3种肥料管理模式中最好的。