针对当前大多数命名实体识别(NER)模型只使用字符级信息编码且缺乏对文本层次信息提取的问题,提出一种融合多粒度语言知识与层级信息的中文NER(CNER)模型(CMH)。首先,使用经过多粒度语言知识预训练的模型编码文本,使模型能够同时捕获文...针对当前大多数命名实体识别(NER)模型只使用字符级信息编码且缺乏对文本层次信息提取的问题,提出一种融合多粒度语言知识与层级信息的中文NER(CNER)模型(CMH)。首先,使用经过多粒度语言知识预训练的模型编码文本,使模型能够同时捕获文本的细粒度和粗粒度语言信息,从而更好地表征语料;其次,使用ON-LSTM(Ordered Neurons Long Short-Term Memory network)模型提取层级信息,利用文本本身的层级结构信息增强编码间的时序关系;最后,在模型的解码端结合文本的分词信息,并将实体识别问题转化为表格填充问题,以更好地解决实体重叠问题并获得更准确的实体识别结果。同时,为解决当前模型在不同领域中的迁移能力较差的问题,提出通用实体识别的理念,通过筛选多领域的通用实体类型,构建一套提升模型在多领域中的泛化能力的通用NER数据集MDNER(Multi-Domain NER dataset)。为验证所提模型的效果,在数据集Resume、Weibo、MSRA上进行实验,与MECT(Multi-metadata Embedding based Cross-Transformer)模型相比,F1值分别提高了0.94、4.95和1.58个百分点。为了验证所提模型在多领域中的实体识别效果,在MDNER上进行实验,F1值达到了95.29%。实验结果表明,多粒度语言知识预训练、文本层级结构信息提取和高效指针解码器对模型的性能提升至关重要。展开更多
义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Trans...义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Transformer的生成式标题模型Tran-A-SDLM(Transformer Adaption based Sememe-Driven Language Model with positional embedding and knowledge reasoning)。该模型充分结合自适应位置编码和知识推理机制的优势。首先,引入Transformer模型以增强模型对文本序列的编码能力;其次,利用自适应位置编码机制增强模型的位置感知能力,从而增强对上下文义原知识的学习;此外,引入知识推理模块,用于表示义原知识,并指导模型生成准确标题;最后,为验证Tran-A-SDLM的优越性,在大规模中文短文本摘要(LCSTS)数据集上进行实验。实验结果表明,与RNN-context-SDLM相比,Tran-A-SDLM在ROUGE-1、ROUGE-2和ROUGE-L值上分别提升了0.2、0.7和0.5个百分点。消融实验结果进一步验证了所提模型的有效性。展开更多
文摘针对当前大多数命名实体识别(NER)模型只使用字符级信息编码且缺乏对文本层次信息提取的问题,提出一种融合多粒度语言知识与层级信息的中文NER(CNER)模型(CMH)。首先,使用经过多粒度语言知识预训练的模型编码文本,使模型能够同时捕获文本的细粒度和粗粒度语言信息,从而更好地表征语料;其次,使用ON-LSTM(Ordered Neurons Long Short-Term Memory network)模型提取层级信息,利用文本本身的层级结构信息增强编码间的时序关系;最后,在模型的解码端结合文本的分词信息,并将实体识别问题转化为表格填充问题,以更好地解决实体重叠问题并获得更准确的实体识别结果。同时,为解决当前模型在不同领域中的迁移能力较差的问题,提出通用实体识别的理念,通过筛选多领域的通用实体类型,构建一套提升模型在多领域中的泛化能力的通用NER数据集MDNER(Multi-Domain NER dataset)。为验证所提模型的效果,在数据集Resume、Weibo、MSRA上进行实验,与MECT(Multi-metadata Embedding based Cross-Transformer)模型相比,F1值分别提高了0.94、4.95和1.58个百分点。为了验证所提模型在多领域中的实体识别效果,在MDNER上进行实验,F1值达到了95.29%。实验结果表明,多粒度语言知识预训练、文本层级结构信息提取和高效指针解码器对模型的性能提升至关重要。
文摘为提高生物资产监盘审计过程中盘点准确性和盘点效率,提出了一种融入注意力机制和损失函数优化的生物资产检测模型YOLOSC。首先,将压缩-激励网络(squeeze-and-excitation networks,SENet)注意力机制引入YOLOv5s模型的主干网络中,以增强对生物资产图片中关键特征的提取能力;其次,采用完全交并比(complete intersection over union,CIoU)作为检测框回归的损失函数,以提升训练过程中检测框的回归速度与定位精度;最后,构建了一个生物资产数据集对所提模型进行针对性训练,以提升模型检测效果。实验结果表明,相较于YOLOv5模型,YOLOSC的精确率、召回率、F_(1)和AP分别提升了2.3%、2.1%、2.7%和1.6%,证明了所提出的生物资产检测模型YOLOSC的有效性。
文摘义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Transformer的生成式标题模型Tran-A-SDLM(Transformer Adaption based Sememe-Driven Language Model with positional embedding and knowledge reasoning)。该模型充分结合自适应位置编码和知识推理机制的优势。首先,引入Transformer模型以增强模型对文本序列的编码能力;其次,利用自适应位置编码机制增强模型的位置感知能力,从而增强对上下文义原知识的学习;此外,引入知识推理模块,用于表示义原知识,并指导模型生成准确标题;最后,为验证Tran-A-SDLM的优越性,在大规模中文短文本摘要(LCSTS)数据集上进行实验。实验结果表明,与RNN-context-SDLM相比,Tran-A-SDLM在ROUGE-1、ROUGE-2和ROUGE-L值上分别提升了0.2、0.7和0.5个百分点。消融实验结果进一步验证了所提模型的有效性。