为实现快速无损获取马铃薯株高和地上生物量信息,分别获取马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期、成熟期的高光谱影像,实测马铃薯株高H、地上生物量(AGB)和地面控制点(GCP)的三维空间坐标,基于无人机高光谱影像结合GCP生...为实现快速无损获取马铃薯株高和地上生物量信息,分别获取马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期、成熟期的高光谱影像,实测马铃薯株高H、地上生物量(AGB)和地面控制点(GCP)的三维空间坐标,基于无人机高光谱影像结合GCP生成试验田的数字表面模型(DSM),利用DSM提取马铃薯的株高H_(dsm);然后,对马铃薯AGB与原始无人机冠层光谱和高光谱指数分别进行相关性分析,筛选出最优光谱指数和前10个光谱指数,利用指数回归(Exponential regression,ER)构建单变量模型;最后,采用多元线性回归(Multiple linear regression,MLR)、偏最小二乘回归(Partial least square regression,PLSR)和随机森林(Random forest,RF)3种方法构建不同生育期的估算模型,并进行对比,挑选出马铃薯AGB估算的最优模型。结果表明:将提取的马铃薯株高与实测值进行线性拟合,R 2为0.84;在单变量模型中,每个生育期以ER估算AGB得到的验证精度高于相应的建模精度,其中构建模型效果优劣次序依次为最优光谱指数、H_(dsm)、H,块茎增长期以CIrededge指数估测精度最高(R 2=0.45);在多变量模型中,每个生育期采用3种方法构建AGB估算模型,每种方法以光谱指数加入H_(dsm)的模型精度更高、稳定性更强;每个生育期利用MLR以光谱指数和H_(dsm)为变量的AGB模型(R^(2)为0.64、0.70、0.79、0.68、0.63)效果优于PLSR(R^(2)为0.62、0.68、0.75、0.67、0.60)和RF(R^(2)为0.56、0.61、0.67、0.63、0.53)模型。利用MLR模型进行马铃薯AGB填图,5个生育期的AGB空间分布与实际生长情况一致。利用融入H_(dsm)的MLR模型可估测大面积马铃薯AGB,为精准农业定量化研究提供技术支持。展开更多
文摘基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C)、籽粒含水率(moisture content,M)、乳线占比(proportion of milk line,P)等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R^(2))为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其R^(2)、RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。
文摘为实现快速无损获取马铃薯株高和地上生物量信息,分别获取马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期、成熟期的高光谱影像,实测马铃薯株高H、地上生物量(AGB)和地面控制点(GCP)的三维空间坐标,基于无人机高光谱影像结合GCP生成试验田的数字表面模型(DSM),利用DSM提取马铃薯的株高H_(dsm);然后,对马铃薯AGB与原始无人机冠层光谱和高光谱指数分别进行相关性分析,筛选出最优光谱指数和前10个光谱指数,利用指数回归(Exponential regression,ER)构建单变量模型;最后,采用多元线性回归(Multiple linear regression,MLR)、偏最小二乘回归(Partial least square regression,PLSR)和随机森林(Random forest,RF)3种方法构建不同生育期的估算模型,并进行对比,挑选出马铃薯AGB估算的最优模型。结果表明:将提取的马铃薯株高与实测值进行线性拟合,R 2为0.84;在单变量模型中,每个生育期以ER估算AGB得到的验证精度高于相应的建模精度,其中构建模型效果优劣次序依次为最优光谱指数、H_(dsm)、H,块茎增长期以CIrededge指数估测精度最高(R 2=0.45);在多变量模型中,每个生育期采用3种方法构建AGB估算模型,每种方法以光谱指数加入H_(dsm)的模型精度更高、稳定性更强;每个生育期利用MLR以光谱指数和H_(dsm)为变量的AGB模型(R^(2)为0.64、0.70、0.79、0.68、0.63)效果优于PLSR(R^(2)为0.62、0.68、0.75、0.67、0.60)和RF(R^(2)为0.56、0.61、0.67、0.63、0.53)模型。利用MLR模型进行马铃薯AGB填图,5个生育期的AGB空间分布与实际生长情况一致。利用融入H_(dsm)的MLR模型可估测大面积马铃薯AGB,为精准农业定量化研究提供技术支持。