目的:基于引入注意力机制的长短期记忆网络(long short-term memory,LSTM)和L1正则化的Logistic回归筛选变量,再通过传统的Logistic回归建立重症监护病房(intensive care unit,ICU)脑卒中患者院内死亡风险预测模型并评价模型效果。方法...目的:基于引入注意力机制的长短期记忆网络(long short-term memory,LSTM)和L1正则化的Logistic回归筛选变量,再通过传统的Logistic回归建立重症监护病房(intensive care unit,ICU)脑卒中患者院内死亡风险预测模型并评价模型效果。方法:选取重症医学信息数据库(Medical Information Mart for Intensive Care-Ⅳ,MIMIC-Ⅳ)中的脑卒中患者作为研究对象,以是否发生院内死亡作为结局变量,备选预测因子包括人口学特征、合并症、入院48 h内实验室检查和生命体征检查等。将数据根据结局指标以8∶2的比例随机进行10次训练集和测试集的划分,在训练集上构建LSTM和L1正则化的Logistic回归模型,在测试集上选取重要程度排名前10的变量的并集纳入Logistic回归建立预测模型,以受试者工作特征曲线下面积(area under curve,AUC)、灵敏度、特异度、预测准确度为指标对模型进行评价,并与未预先进行变量筛选的前进法Logistic回归模型的预测效果进行比较。结果:共纳入2755例脑卒中患者的2979条ICU入院记录,其中院内死亡记录占17.66%。两个变量筛选模型中,L1正则化的Logistic回归模型的AUC显著优于LSTM模型(0.819±0.031 vs.0.760±0.018,P<0.001),两个模型中重要程度均位于前10的变量包括年龄、血糖和尿素氮。最终预测模型的AUC为0.85,灵敏度为85.98%,特异度为71.74%,预测准确率为74.26%,优于未预先进行变量筛选的前进法Logistic回归模型。结论:用引入注意力机制的LSTM和L1正则的Logistic回归筛选出的变量的预测效果较好,具有一定的临床价值。展开更多
目的基于Logistic回归和XGBoost方法构建缺血性卒中院内复发风险预测模型,并进行初步比较。方法利用中国国家卒中登记Ⅱ(China National Stoke RegistryⅡ,CNSRⅡ)数据库中按医嘱离院的缺血性卒中患者数据,分别基于Logistic回归和XGBoos...目的基于Logistic回归和XGBoost方法构建缺血性卒中院内复发风险预测模型,并进行初步比较。方法利用中国国家卒中登记Ⅱ(China National Stoke RegistryⅡ,CNSRⅡ)数据库中按医嘱离院的缺血性卒中患者数据,分别基于Logistic回归和XGBoost方法构建缺血性卒中院内复发风险预测模型。备选的预测因子包括人口学特征、卒中严重程度、既往病史、用药史以及临床测量指标。模型的评价指标包括ROC曲线下面积(area under the cure,AUC)、校准截距、校准斜率以及Brier得分。所有统计分析均在R(3.6.2版)中完成。结果最终纳入17227例符合条件的患者,平均年龄64.72±11.84岁,女性6317例(36.7%),发病前mRS评分为0或1分的病例14482例(84.1%),入院NIHSS评分4(2~6)分,院内卒中复发444例(2.6%)。预测模型识别的前三位强预测因子,在Logistic回归中为发病前mRS评分、心房颤动及卒中史;在XGBoost中为发病前mRS评分、心房颤动及总胆固醇。Logistic回归预测模型与XGBoost预测模型的AUC无显著差异(0.63,95%CI 0.58~0.68 vs 0.64,95%CI 0.59~0.68,P=0.9229)。Logistic预测模型校准截距、校准斜率以及Brier得分分别为-0.81、0.76和0.03;XGBoost预测模型的校准截距、校准斜率以及Brier得分分别为-1.37、1.20和0.38。Logistic预测模型校准度更好。结论利用CNSRⅡ数据构建的缺血性卒中院内复发风险预测模型应用中,基于XGBoost方法构建的预测模型相比Logistic回归构建的预测模型的区分度没有显著差异,但校准度略低。展开更多
目的探讨基于机器学习算法XGBoost构建缺血性卒中发病3个月死亡预测模型的应用价值。方法选择中国国家卒中登记(China National Stoke Registry,CNSR)数据库中缺血性卒中患者为研究对象。按照7∶3比例随机分为训练集和测试集,训练集用...目的探讨基于机器学习算法XGBoost构建缺血性卒中发病3个月死亡预测模型的应用价值。方法选择中国国家卒中登记(China National Stoke Registry,CNSR)数据库中缺血性卒中患者为研究对象。按照7∶3比例随机分为训练集和测试集,训练集用于构建预测模型,测试集用于评价模型效果。分别采用XGBoost和Logistic回归方法构建缺血性卒中发病3个月死亡预测模型,通过ROC曲线下面积(area under the curve,AUC)评价两种模型的预测价值。结果共纳入10645例缺血性卒中患者,平均年龄65.18±12.23岁,女性4045例(38.0%),入院NIHSS评分4(2~9)分,3个月死亡患者447例(4.48%)。XGBoost和Logistic回归预测模型的AUC分别为0.8539、0.8278(P=0.0835),灵敏度分别为0.7413、0.7133,特异度分别为0.8286、0.8040。结论基于机器学习算法XGBoost构建的缺血性卒中死亡预测模型表现良好且稳定。展开更多
文摘目的:基于引入注意力机制的长短期记忆网络(long short-term memory,LSTM)和L1正则化的Logistic回归筛选变量,再通过传统的Logistic回归建立重症监护病房(intensive care unit,ICU)脑卒中患者院内死亡风险预测模型并评价模型效果。方法:选取重症医学信息数据库(Medical Information Mart for Intensive Care-Ⅳ,MIMIC-Ⅳ)中的脑卒中患者作为研究对象,以是否发生院内死亡作为结局变量,备选预测因子包括人口学特征、合并症、入院48 h内实验室检查和生命体征检查等。将数据根据结局指标以8∶2的比例随机进行10次训练集和测试集的划分,在训练集上构建LSTM和L1正则化的Logistic回归模型,在测试集上选取重要程度排名前10的变量的并集纳入Logistic回归建立预测模型,以受试者工作特征曲线下面积(area under curve,AUC)、灵敏度、特异度、预测准确度为指标对模型进行评价,并与未预先进行变量筛选的前进法Logistic回归模型的预测效果进行比较。结果:共纳入2755例脑卒中患者的2979条ICU入院记录,其中院内死亡记录占17.66%。两个变量筛选模型中,L1正则化的Logistic回归模型的AUC显著优于LSTM模型(0.819±0.031 vs.0.760±0.018,P<0.001),两个模型中重要程度均位于前10的变量包括年龄、血糖和尿素氮。最终预测模型的AUC为0.85,灵敏度为85.98%,特异度为71.74%,预测准确率为74.26%,优于未预先进行变量筛选的前进法Logistic回归模型。结论:用引入注意力机制的LSTM和L1正则的Logistic回归筛选出的变量的预测效果较好,具有一定的临床价值。
文摘目的基于Logistic回归和XGBoost方法构建缺血性卒中院内复发风险预测模型,并进行初步比较。方法利用中国国家卒中登记Ⅱ(China National Stoke RegistryⅡ,CNSRⅡ)数据库中按医嘱离院的缺血性卒中患者数据,分别基于Logistic回归和XGBoost方法构建缺血性卒中院内复发风险预测模型。备选的预测因子包括人口学特征、卒中严重程度、既往病史、用药史以及临床测量指标。模型的评价指标包括ROC曲线下面积(area under the cure,AUC)、校准截距、校准斜率以及Brier得分。所有统计分析均在R(3.6.2版)中完成。结果最终纳入17227例符合条件的患者,平均年龄64.72±11.84岁,女性6317例(36.7%),发病前mRS评分为0或1分的病例14482例(84.1%),入院NIHSS评分4(2~6)分,院内卒中复发444例(2.6%)。预测模型识别的前三位强预测因子,在Logistic回归中为发病前mRS评分、心房颤动及卒中史;在XGBoost中为发病前mRS评分、心房颤动及总胆固醇。Logistic回归预测模型与XGBoost预测模型的AUC无显著差异(0.63,95%CI 0.58~0.68 vs 0.64,95%CI 0.59~0.68,P=0.9229)。Logistic预测模型校准截距、校准斜率以及Brier得分分别为-0.81、0.76和0.03;XGBoost预测模型的校准截距、校准斜率以及Brier得分分别为-1.37、1.20和0.38。Logistic预测模型校准度更好。结论利用CNSRⅡ数据构建的缺血性卒中院内复发风险预测模型应用中,基于XGBoost方法构建的预测模型相比Logistic回归构建的预测模型的区分度没有显著差异,但校准度略低。
文摘目的探讨基于机器学习算法XGBoost构建缺血性卒中发病3个月死亡预测模型的应用价值。方法选择中国国家卒中登记(China National Stoke Registry,CNSR)数据库中缺血性卒中患者为研究对象。按照7∶3比例随机分为训练集和测试集,训练集用于构建预测模型,测试集用于评价模型效果。分别采用XGBoost和Logistic回归方法构建缺血性卒中发病3个月死亡预测模型,通过ROC曲线下面积(area under the curve,AUC)评价两种模型的预测价值。结果共纳入10645例缺血性卒中患者,平均年龄65.18±12.23岁,女性4045例(38.0%),入院NIHSS评分4(2~9)分,3个月死亡患者447例(4.48%)。XGBoost和Logistic回归预测模型的AUC分别为0.8539、0.8278(P=0.0835),灵敏度分别为0.7413、0.7133,特异度分别为0.8286、0.8040。结论基于机器学习算法XGBoost构建的缺血性卒中死亡预测模型表现良好且稳定。