以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子...以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50 m A·g-1的电流密度下可逆比容量为1 000 m Ah·g-1,循环50次后比容量还保持在950 m Ah·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。展开更多
Electronic circular dichroism(ECD)spectrum is an important tool for as-sessing molecular chirality.Tradition-al methods,like linear response time-dependent density functional theory(LR-TDDFT),predict ECD spectra well ...Electronic circular dichroism(ECD)spectrum is an important tool for as-sessing molecular chirality.Tradition-al methods,like linear response time-dependent density functional theory(LR-TDDFT),predict ECD spectra well for small or medium-sized molecules,but struggle with large sys-tems due to high computational costs,making it a significant challenge to ac-curately and efficiently predict the ECD properties of complex systems.Within the framework of the generalized energy-based fragmentation(GEBF)method for localized excited states(ESs)calculation,we propose a combination algorithm for calculating rotatory strengths of ESs in condensed phase systems.This algorithm estimates the rotatory strength of the total system by calculating and combin-ing the transition electric and magnetic dipole moments of subsystems.We have used the GEBF method to calculate the ECD properties of chiral drug molecule derivatives,green fluo-rescent protein,and cyclodextrin derivatives,and compared their results with traditional methods or experimental data.The results show that this method can efficiently and accu-rately predict the ECD spectra of these systems.Thus,the GEBF method for ECD spectra demonstrates great potential in the chiral analysis of complex systems and chiral material design,promising to become a powerful theoretical tool in chiral chemistry.展开更多
CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can ...CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.展开更多
The heterogeneous catalytic oxidation of toluene by O_(2)is an inherently safe and green route for production of benzaldehyde,but after more than fifty years of effort,it remains a great challenge.Here,we report the b...The heterogeneous catalytic oxidation of toluene by O_(2)is an inherently safe and green route for production of benzaldehyde,but after more than fifty years of effort,it remains a great challenge.Here,we report the best heterogeneous catalyst,TeO_(x)/MoVTeNbO,up to now for the green oxidation of toluene by O_(2)to benzaldehyde,balancing the catalyst activity,selectivity,and stability.The deposition of TeO_(x) endows the MoVTeNbO composite oxide with entirely new property for toluene oxidation and the surface engineering mechanism has been fully explained.The discrete TeO_(x) clusters on the surface,shielding the nonselective oxidation sites that interact strongly with the benzene ring of toluene molecule,allows toluene molecule to chemically adsorb to the surface perpendicularly and the methyl is then prone to oxidation to aldehyde on the reshaped selective oxidation sites,where V=O is the main active species responsible for continuously extracting hydrogen from methyl and implanting oxygen to form benzaldehyde.The TeO_(x) clusters participate in this reaction through variable valences and stabilize benzaldehyde by couple interaction with the–CHO group of benzaldehyde,thereby achieving high selectivity to benzaldehyde(>95%).The extended works indicate that the catalytic mechanism is effective in a series of selective oxidation of toluene homologues to corresponding aldehydes.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface ...Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.展开更多
A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/wate...A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.展开更多
The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined wi...The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.展开更多
A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i...A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein‐Ponndorf‐Verley type reaction.The deposition process produced a highly disperse layer of titanium oxide on the surface of aγ‐Al2O3‐nt support.After a reduction treatment,the as‐prepared TiOx/γ‐Al2O3‐nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde.Selectivity for cinnamic alcohol was higher than99%and the conversion of cinnamaldehyde was higher than95%.The regular morphology of theγ‐Al2O3‐nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III)species.These factors contributed to the high performance of the TiOx/γ‐Al2O3‐nt catalyst.展开更多
The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demon...The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.展开更多
Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differ...Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differs remarkably from typical Pd nanoparticle catalysts,with excellent reactivity and selectivity in the one-pot synthesis of benzalaniline from nitrobenzene and benzaldehyde.We anticipate that our work will serve as a starting point for the catalytic applications of these tiny atomically precise nanoclusters in green chemistry for the one-pot syntheses of fine chemicals.展开更多
Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies an...Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies and Raman spectra of various MH clusters.For the GEBF binding energies of various MH clusters,we first evaluated the various functionals of density functional theory(DFT),and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections[CCSD(T)(F12^(*))]method.Our results show that the two best functionals are B3PW91-D3 and B97D,with mean absolute errors of only 0.27 and 0.47 kcal/mol,respectively.Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono-and double-cages.Our results show that the B3PW91-D3 functional can well reproduce the experimental C-H stretching Raman spectra of methane in MH crystals,with errors less than 3 cm^(-1).As the size of the water cages increased,the C-H stretching Raman spectra exhibited a redshift,which is also in agreement with the experimental“loose cage-tight cage”model.In addition,the Raman spectra are only slightly affected by the neighboring environment(cages)of methane.The blueshifts of C-H stretching frequencies are no larger than 3 cm^(-1) for CH_(4) from monocages to doublecages.The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies.Based on the B3PW91-D3 or B97D functional and machine learning models,molecular dynamics simulations could be applied to the nucleation and growth mechanisms,and the phase transitions of methane hydrates.展开更多
In order to investigate the origin of catalytic power for serine proteases,the role of the hydrogen bond in the catalytic triad was studied in the proteolysis process of the peptides chymotrypsin inhibitor 2(CI2),MCTI...In order to investigate the origin of catalytic power for serine proteases,the role of the hydrogen bond in the catalytic triad was studied in the proteolysis process of the peptides chymotrypsin inhibitor 2(CI2),MCTI-A,and a hexapeptide(SUB),respectively.We first calculated the free energy profile of the proton transfer between His and Asp residues of the catalytic triad in the enzyme-substrate state and transition state by employing QM/MM molecular dynamics simulations.The results show that a low-barrier hydrogen bond(LBHB)only forms in the transition state of the acylation of CI2,while it is a normal hydrogen bond in the acylation of MCTI-A or SUB.In addition,the change of the hydrogen bond strength is much larger in CI2 and SUB systems than in MCTI-A system,which decreases the acylation energy barrier significantly for CI2 and SUB.Clearly,a LBHB formed in the transition state region helps accelerate the acylation reaction.But to our surprise,a normal hydrogen bond can also help to decrease the energy barrier.The key to reducing the reaction barrier is the increment of hydrogen bond strength in the transition state state,whether it is a LBHB or not.Our studies cast new light on the role of the hydrogen bond in the catalytic triad,and help to understand the catalytic triad of serine proteases.展开更多
Complex-forming reactions widely exist in gas-phase chemical reactions. Various complexforming bimolecular reactions have been investigated and interesting phenomena have been discovered. The complex-forming reactions...Complex-forming reactions widely exist in gas-phase chemical reactions. Various complexforming bimolecular reactions have been investigated and interesting phenomena have been discovered. The complex-forming reactions usually have small or no barrier in the entrance channel, which leads to obvious differences in kinetic and dynamic characteristics compared with direct reactions. Theoretically, quantum state-resolved reaction dynamics can provide the most detailed microscopic dynamic mechanisms and is now feasible for a direct reaction with only one potential barrier. However, it is of great challenge to construct accurate potential energy surfaces and perform accurate quantum dynamics calculations for a complex polyatomic reaction involving deep potential wells and multi-channels. This paper reviews the most recent progress in two prototypical oxyhydrogen complex-forming reaction systems, HO2 and HO3, which are significant in combustion, atmospheric, and interstellar chemistry. We will present a brief survey of both computational and experimental work and emphasize on some unsolved problems existing in these systems.展开更多
The integral cross sections and rate constants of pure rotational and ro-vibrational energy transfer processes for the Ar-HF system are thoroughly studied by using the timeindependent close coupling method based on ou...The integral cross sections and rate constants of pure rotational and ro-vibrational energy transfer processes for the Ar-HF system are thoroughly studied by using the timeindependent close coupling method based on our newly constructed potential energy surface. Compared to previous theoretical results, pure rotational transitions in this work achieve better agreement with the experimental data. For ro-vibrational energy transfer, it is found that quasi-resonant transitions dominate the cross sections in all cases. Furthermore, the vibrational-resolved rate constant of transition v=1→v=0 increases very quickly with the temperature from 100K to 1500K and is also in good agreement with the available experimental results.展开更多
文摘以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50 m A·g-1的电流密度下可逆比容量为1 000 m Ah·g-1,循环50次后比容量还保持在950 m Ah·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。
基金supported by the National Natural Science Foundation of China(No.22273038 and No.22033004).
文摘Electronic circular dichroism(ECD)spectrum is an important tool for as-sessing molecular chirality.Tradition-al methods,like linear response time-dependent density functional theory(LR-TDDFT),predict ECD spectra well for small or medium-sized molecules,but struggle with large sys-tems due to high computational costs,making it a significant challenge to ac-curately and efficiently predict the ECD properties of complex systems.Within the framework of the generalized energy-based fragmentation(GEBF)method for localized excited states(ESs)calculation,we propose a combination algorithm for calculating rotatory strengths of ESs in condensed phase systems.This algorithm estimates the rotatory strength of the total system by calculating and combin-ing the transition electric and magnetic dipole moments of subsystems.We have used the GEBF method to calculate the ECD properties of chiral drug molecule derivatives,green fluo-rescent protein,and cyclodextrin derivatives,and compared their results with traditional methods or experimental data.The results show that this method can efficiently and accu-rately predict the ECD spectra of these systems.Thus,the GEBF method for ECD spectra demonstrates great potential in the chiral analysis of complex systems and chiral material design,promising to become a powerful theoretical tool in chiral chemistry.
文摘CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.
文摘The heterogeneous catalytic oxidation of toluene by O_(2)is an inherently safe and green route for production of benzaldehyde,but after more than fifty years of effort,it remains a great challenge.Here,we report the best heterogeneous catalyst,TeO_(x)/MoVTeNbO,up to now for the green oxidation of toluene by O_(2)to benzaldehyde,balancing the catalyst activity,selectivity,and stability.The deposition of TeO_(x) endows the MoVTeNbO composite oxide with entirely new property for toluene oxidation and the surface engineering mechanism has been fully explained.The discrete TeO_(x) clusters on the surface,shielding the nonselective oxidation sites that interact strongly with the benzene ring of toluene molecule,allows toluene molecule to chemically adsorb to the surface perpendicularly and the methyl is then prone to oxidation to aldehyde on the reshaped selective oxidation sites,where V=O is the main active species responsible for continuously extracting hydrogen from methyl and implanting oxygen to form benzaldehyde.The TeO_(x) clusters participate in this reaction through variable valences and stabilize benzaldehyde by couple interaction with the–CHO group of benzaldehyde,thereby achieving high selectivity to benzaldehyde(>95%).The extended works indicate that the catalytic mechanism is effective in a series of selective oxidation of toluene homologues to corresponding aldehydes.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
文摘Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.
基金supported by the National Natural Science Foundation of China(91434101,91745108)the Ministry of Science and Technology of the People’s Republic of China(2017YFB0702900)~~
文摘A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.
基金supported by the National Natural Foundation of China(21607019,21503115)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC013)the Talent Introduction Project of Chongqing Three Gorges University~~
文摘The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.
基金supported by the National Natural Science Foundation of China (91434101)the National Key R&D Plan (2017YFB0702800)~~
文摘A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein‐Ponndorf‐Verley type reaction.The deposition process produced a highly disperse layer of titanium oxide on the surface of aγ‐Al2O3‐nt support.After a reduction treatment,the as‐prepared TiOx/γ‐Al2O3‐nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde.Selectivity for cinnamic alcohol was higher than99%and the conversion of cinnamaldehyde was higher than95%.The regular morphology of theγ‐Al2O3‐nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III)species.These factors contributed to the high performance of the TiOx/γ‐Al2O3‐nt catalyst.
文摘The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.
基金financial supports from National Natural Science Foundation of China(21773109,91845104)~~
文摘Nanoclusters with a precise number of atoms may exhibit unique and often unexpected catalytic properties.Here,we report an atomically precise Pd3 nanocluster as an efficient catalyst,whose catalytic performance differs remarkably from typical Pd nanoparticle catalysts,with excellent reactivity and selectivity in the one-pot synthesis of benzalaniline from nitrobenzene and benzaldehyde.We anticipate that our work will serve as a starting point for the catalytic applications of these tiny atomically precise nanoclusters in green chemistry for the one-pot syntheses of fine chemicals.
基金supported by the National Natural Science Foundation of China(No.22033004,No.21833002,No.21873046,and No.22073043)the Natural Science Foundation of Jiangsu Province(No.BK20210175)。
文摘Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies and Raman spectra of various MH clusters.For the GEBF binding energies of various MH clusters,we first evaluated the various functionals of density functional theory(DFT),and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections[CCSD(T)(F12^(*))]method.Our results show that the two best functionals are B3PW91-D3 and B97D,with mean absolute errors of only 0.27 and 0.47 kcal/mol,respectively.Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono-and double-cages.Our results show that the B3PW91-D3 functional can well reproduce the experimental C-H stretching Raman spectra of methane in MH crystals,with errors less than 3 cm^(-1).As the size of the water cages increased,the C-H stretching Raman spectra exhibited a redshift,which is also in agreement with the experimental“loose cage-tight cage”model.In addition,the Raman spectra are only slightly affected by the neighboring environment(cages)of methane.The blueshifts of C-H stretching frequencies are no larger than 3 cm^(-1) for CH_(4) from monocages to doublecages.The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies.Based on the B3PW91-D3 or B97D functional and machine learning models,molecular dynamics simulations could be applied to the nucleation and growth mechanisms,and the phase transitions of methane hydrates.
基金supported by the National Key Research and Development Program of China(2017YFA0206500)the National Natural Science Foundation of China(No.22073040)。
文摘In order to investigate the origin of catalytic power for serine proteases,the role of the hydrogen bond in the catalytic triad was studied in the proteolysis process of the peptides chymotrypsin inhibitor 2(CI2),MCTI-A,and a hexapeptide(SUB),respectively.We first calculated the free energy profile of the proton transfer between His and Asp residues of the catalytic triad in the enzyme-substrate state and transition state by employing QM/MM molecular dynamics simulations.The results show that a low-barrier hydrogen bond(LBHB)only forms in the transition state of the acylation of CI2,while it is a normal hydrogen bond in the acylation of MCTI-A or SUB.In addition,the change of the hydrogen bond strength is much larger in CI2 and SUB systems than in MCTI-A system,which decreases the acylation energy barrier significantly for CI2 and SUB.Clearly,a LBHB formed in the transition state region helps accelerate the acylation reaction.But to our surprise,a normal hydrogen bond can also help to decrease the energy barrier.The key to reducing the reaction barrier is the increment of hydrogen bond strength in the transition state state,whether it is a LBHB or not.Our studies cast new light on the role of the hydrogen bond in the catalytic triad,and help to understand the catalytic triad of serine proteases.
基金supported by the National Natural Science Foundation of China (No.91641104, No.21733006, and No.21590802)
文摘Complex-forming reactions widely exist in gas-phase chemical reactions. Various complexforming bimolecular reactions have been investigated and interesting phenomena have been discovered. The complex-forming reactions usually have small or no barrier in the entrance channel, which leads to obvious differences in kinetic and dynamic characteristics compared with direct reactions. Theoretically, quantum state-resolved reaction dynamics can provide the most detailed microscopic dynamic mechanisms and is now feasible for a direct reaction with only one potential barrier. However, it is of great challenge to construct accurate potential energy surfaces and perform accurate quantum dynamics calculations for a complex polyatomic reaction involving deep potential wells and multi-channels. This paper reviews the most recent progress in two prototypical oxyhydrogen complex-forming reaction systems, HO2 and HO3, which are significant in combustion, atmospheric, and interstellar chemistry. We will present a brief survey of both computational and experimental work and emphasize on some unsolved problems existing in these systems.
基金supported by the National Natural Science Foundation of China (No.21590802 and No.21733006)
文摘The integral cross sections and rate constants of pure rotational and ro-vibrational energy transfer processes for the Ar-HF system are thoroughly studied by using the timeindependent close coupling method based on our newly constructed potential energy surface. Compared to previous theoretical results, pure rotational transitions in this work achieve better agreement with the experimental data. For ro-vibrational energy transfer, it is found that quasi-resonant transitions dominate the cross sections in all cases. Furthermore, the vibrational-resolved rate constant of transition v=1→v=0 increases very quickly with the temperature from 100K to 1500K and is also in good agreement with the available experimental results.