目的针对高斯-脉冲混合噪声图像中难以有效去除大量奇异点或离群数据的问题,提出一种基于凸包优化的盲源分离方法来去除图像中的混合噪声。方法该方法把混合噪声和原图均看作未知的源信号,依据噪声图像中混合噪声与原图内容的加性关系...目的针对高斯-脉冲混合噪声图像中难以有效去除大量奇异点或离群数据的问题,提出一种基于凸包优化的盲源分离方法来去除图像中的混合噪声。方法该方法把混合噪声和原图均看作未知的源信号,依据噪声图像中混合噪声与原图内容的加性关系建立盲源分离的模型,并利用凸包优化的方法构建源信号(凸包极点)的仿射包,然后通过最小化仿射包到凸包(噪声图像)上的投影误差,求解混合噪声和原图2个源信号,实现去噪混合噪声、复原原图的目的。结果实验结果发现,无论高斯-脉冲混合噪声强弱,该方法去噪复原后的峰值信噪比和平均结构相似性分别在39.9129 d B和0.9以上。结论由实验数据证实该方法可有效地从盲源分离的角度去除图像中高斯-脉冲混合噪声、复原原始图像。展开更多
文摘目的针对高斯-脉冲混合噪声图像中难以有效去除大量奇异点或离群数据的问题,提出一种基于凸包优化的盲源分离方法来去除图像中的混合噪声。方法该方法把混合噪声和原图均看作未知的源信号,依据噪声图像中混合噪声与原图内容的加性关系建立盲源分离的模型,并利用凸包优化的方法构建源信号(凸包极点)的仿射包,然后通过最小化仿射包到凸包(噪声图像)上的投影误差,求解混合噪声和原图2个源信号,实现去噪混合噪声、复原原图的目的。结果实验结果发现,无论高斯-脉冲混合噪声强弱,该方法去噪复原后的峰值信噪比和平均结构相似性分别在39.9129 d B和0.9以上。结论由实验数据证实该方法可有效地从盲源分离的角度去除图像中高斯-脉冲混合噪声、复原原始图像。