期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于随机谱梯度的在线学习
1
作者 薛伟 张文生 任俊宏 《计算机科学》 CSCD 北大核心 2016年第9期47-51,共5页
考虑一类学习问题,问题的目标函数可表示为大量组函数的平均,并且假设每一个组件函数都是光滑的。在众多机器学习方法中,在线学习操作流程简洁、收敛速度快,而且可以实现模型的自动更新,为大数据的学习提供了有利的工具。针对这类问题,... 考虑一类学习问题,问题的目标函数可表示为大量组函数的平均,并且假设每一个组件函数都是光滑的。在众多机器学习方法中,在线学习操作流程简洁、收敛速度快,而且可以实现模型的自动更新,为大数据的学习提供了有利的工具。针对这类问题,提出了一种基于随机谱梯度下降(Stochastic Spectral Gradient Descent,S2 GD)的在线学习方法。该方法利用Rayleigh商收集目标函数的二阶信息来构造Hessian阵逆的近似。S2 GD方法可以看作是谱梯度方法从确定性优化到随机优化的延伸。算法每次迭代所产生的搜索方向具有下降性,且现有结论表明算法收敛。在LIBSVM数据库上的初步实验表明S2 GD方法是可行的、有效的。 展开更多
关键词 在线学习 随机优化 凸优化 随机梯度 谱梯度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部