Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path plann...Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.展开更多
A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studi...A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studied when it is subjected to impact load.According to the protection performance for the flexible joint and the pressure change in the fluid bag during the impact process,the sensitivity of the geometric parameters of the fluid bag to the axial stiffness is analyzed by using the orthogonal experimental method,and the optimal parameter combination of the geometric parameters of the fluid bag under impact is obtained,leading to the displacement of the inner shell reduce by 41.4%.The results show that the internal pressure of the fluid bag is a rising process of oscillation and fluctuation.The sensitivity of the geometric parameters of the fluid bag to the displacement of the inner shell from high to low is as follows:Height H,radius r,wall thickness t,chamfer A.The correlation between the geometric parameters of the fluid bag and its internal pressure is:H is negatively correlated with the internal pressure,while the r,t,and A are positively correlated with the internal pressure.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities(No.NZ18008)。
文摘Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.
基金supported by the Fun⁃damental Scientific Research Business Expenses of Central Universities(No.NJ2020024).
文摘A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studied when it is subjected to impact load.According to the protection performance for the flexible joint and the pressure change in the fluid bag during the impact process,the sensitivity of the geometric parameters of the fluid bag to the axial stiffness is analyzed by using the orthogonal experimental method,and the optimal parameter combination of the geometric parameters of the fluid bag under impact is obtained,leading to the displacement of the inner shell reduce by 41.4%.The results show that the internal pressure of the fluid bag is a rising process of oscillation and fluctuation.The sensitivity of the geometric parameters of the fluid bag to the displacement of the inner shell from high to low is as follows:Height H,radius r,wall thickness t,chamfer A.The correlation between the geometric parameters of the fluid bag and its internal pressure is:H is negatively correlated with the internal pressure,while the r,t,and A are positively correlated with the internal pressure.