为研究电缆终端主绝缘含气隙缺陷下的局部放电(PD)及缺陷表面的形貌特征,通过在10 k V电缆终端上制作典型的气隙缺陷,利用电缆附件电热老化平台模拟终端的实际运行工况并加速老化,利用罗戈夫基线圈传感器提取终端在不同老化时刻下的PD数...为研究电缆终端主绝缘含气隙缺陷下的局部放电(PD)及缺陷表面的形貌特征,通过在10 k V电缆终端上制作典型的气隙缺陷,利用电缆附件电热老化平台模拟终端的实际运行工况并加速老化,利用罗戈夫基线圈传感器提取终端在不同老化时刻下的PD数据,并用扫描电镜(SEM)对气隙缺陷的表面形貌特征进行观察。结合气隙缺陷内部的电场分布进一步分析终端PD的发展规律。结果表明:电缆终端的PD及气隙缺陷表面的形貌特征在不同老化时刻下呈现明显差异,缺陷表面XLPE的碳化过程提高了气隙缺陷的表面电导率,加快了缺陷表面电荷的耗散速度。展开更多
文摘为研究电缆终端主绝缘含气隙缺陷下的局部放电(PD)及缺陷表面的形貌特征,通过在10 k V电缆终端上制作典型的气隙缺陷,利用电缆附件电热老化平台模拟终端的实际运行工况并加速老化,利用罗戈夫基线圈传感器提取终端在不同老化时刻下的PD数据,并用扫描电镜(SEM)对气隙缺陷的表面形貌特征进行观察。结合气隙缺陷内部的电场分布进一步分析终端PD的发展规律。结果表明:电缆终端的PD及气隙缺陷表面的形貌特征在不同老化时刻下呈现明显差异,缺陷表面XLPE的碳化过程提高了气隙缺陷的表面电导率,加快了缺陷表面电荷的耗散速度。