针对现有的直升机桨叶欠曝光图像中圆形标记点检测方法存在自适应能力不强、速度慢、精度不高的问题,提出了基于YOLOv3(you only look once)与分水岭的直升机桨叶欠曝光图像圆形标记点检测方法.首先,将采集的真实桨叶欠曝光图像中的圆...针对现有的直升机桨叶欠曝光图像中圆形标记点检测方法存在自适应能力不强、速度慢、精度不高的问题,提出了基于YOLOv3(you only look once)与分水岭的直升机桨叶欠曝光图像圆形标记点检测方法.首先,将采集的真实桨叶欠曝光图像中的圆形标记点进行标注后,制作成数据集,并训练YOLOv3网络;其次,用训练好的YOLOv3网络检测出圆形标记点区域;再次,改进传统分水岭标记提取方式,采用多线程技术并行在各圆形标记点区域内进行分水岭变换,得到圆形标记点边缘检测结果;最后,采用最小二乘圆拟合和奇异点去除法实现圆形标记点的精确定位.研究者通过对多幅欠曝光桨叶图像中圆形标记点进行检测实验,验证了该方法具有自适应能力强、速度快、精度高的优点,并已将其用于直升机桨叶欠曝光图像圆形标记点的检测.展开更多
遥感图像目标检测存在目标尺寸变化大、小目标排列密集、背景信息复杂等问题,针对这些问题,提出了端到端的遥感图像目标检测网络AMFI-RetinaNet(Attention and Multi-scale Feature Interactive-RetinaNet)来提高特征的判别能力。首先,...遥感图像目标检测存在目标尺寸变化大、小目标排列密集、背景信息复杂等问题,针对这些问题,提出了端到端的遥感图像目标检测网络AMFI-RetinaNet(Attention and Multi-scale Feature Interactive-RetinaNet)来提高特征的判别能力。首先,提出了卷积注意力来增强特征的空间信息,并结合通道注意力来增强特征的通道信息,该注意力模块位于特征提取网络的低层,能有效突出关键的细节特征,并提高网络对小目标的检测能力。此外,还提出了多尺度特征交互模板,通过相邻两层特征的交互,使低层特征信息流向高层,在特征金字塔结构后引入该模块,进一步提高了网络对多尺度目标的检测性能。在RSOD数据集和NWPU VHR-10数据集上进行实验,该方法比原RetinaNet网络的平均检测精度分别提升了2%和1.1%,实验结果表明提出的AMFI-RetinaNet网络可以更精确地对遥感图像目标进行检测和定位。展开更多
文摘针对现有的直升机桨叶欠曝光图像中圆形标记点检测方法存在自适应能力不强、速度慢、精度不高的问题,提出了基于YOLOv3(you only look once)与分水岭的直升机桨叶欠曝光图像圆形标记点检测方法.首先,将采集的真实桨叶欠曝光图像中的圆形标记点进行标注后,制作成数据集,并训练YOLOv3网络;其次,用训练好的YOLOv3网络检测出圆形标记点区域;再次,改进传统分水岭标记提取方式,采用多线程技术并行在各圆形标记点区域内进行分水岭变换,得到圆形标记点边缘检测结果;最后,采用最小二乘圆拟合和奇异点去除法实现圆形标记点的精确定位.研究者通过对多幅欠曝光桨叶图像中圆形标记点进行检测实验,验证了该方法具有自适应能力强、速度快、精度高的优点,并已将其用于直升机桨叶欠曝光图像圆形标记点的检测.