期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
受限玻尔兹曼机的新混合稀疏惩罚机制
被引量:
5
1
作者
刘凯
张立民
张超
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2015年第6期1070-1078,共9页
为解决受限玻尔兹曼机(RBM)在学习过程中出现的特征同质化问题,在RBM已有的稀疏模型基础上提出新的混合稀疏惩罚机制(HSPM).鉴于隐单元之间存在的统计相关性,该机制通过在RBM训练过程中引入交叉熵稀疏惩罚因子,实现对RBM的初步处理;按...
为解决受限玻尔兹曼机(RBM)在学习过程中出现的特征同质化问题,在RBM已有的稀疏模型基础上提出新的混合稀疏惩罚机制(HSPM).鉴于隐单元之间存在的统计相关性,该机制通过在RBM训练过程中引入交叉熵稀疏惩罚因子,实现对RBM的初步处理;按照基于RBM连接权值列相似性的自适应分组策略,构建稀疏组RBM,并按照稀疏组受限玻尔兹曼机(SGRBM)的形式继续进行隐单元稀疏化.实验结果表明:HSPM能够有效解决RBM特征同质化问题,在隐单元的稀疏程度上优于以往的稀疏惩罚因子,可以整体提高RBM的特征提取能力,并可以成功应用于深度玻尔兹曼机(DBM)的训练.
展开更多
关键词
人工神经网络
受限玻尔兹曼机(RBM)
稀疏表示
混合稀疏惩罚机制(HSPM)
下载PDF
职称材料
题名
受限玻尔兹曼机的新混合稀疏惩罚机制
被引量:
5
1
作者
刘凯
张立民
张超
机构
海军航空工程学院电子信息工程学系
南海舰队装备部军械处
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2015年第6期1070-1078,共9页
基金
国家自然科学基金资助项目(61032001)
文摘
为解决受限玻尔兹曼机(RBM)在学习过程中出现的特征同质化问题,在RBM已有的稀疏模型基础上提出新的混合稀疏惩罚机制(HSPM).鉴于隐单元之间存在的统计相关性,该机制通过在RBM训练过程中引入交叉熵稀疏惩罚因子,实现对RBM的初步处理;按照基于RBM连接权值列相似性的自适应分组策略,构建稀疏组RBM,并按照稀疏组受限玻尔兹曼机(SGRBM)的形式继续进行隐单元稀疏化.实验结果表明:HSPM能够有效解决RBM特征同质化问题,在隐单元的稀疏程度上优于以往的稀疏惩罚因子,可以整体提高RBM的特征提取能力,并可以成功应用于深度玻尔兹曼机(DBM)的训练.
关键词
人工神经网络
受限玻尔兹曼机(RBM)
稀疏表示
混合稀疏惩罚机制(HSPM)
Keywords
artificial neural network
restricted Boltzmann machine (RBM)
sparse representation
hybridsparse penalty mechanism (HSPM)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
受限玻尔兹曼机的新混合稀疏惩罚机制
刘凯
张立民
张超
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2015
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部