针对功率预测算法下光伏最大功率点跟踪(maximum power point tracking,MPPT)系统中存在误判情况的问题,提出一种基于拉格朗日插值法改进功率预测的光伏变步长扰动观察法。首先,通过拉格朗日插值法建立插值模型,以减少预测功率值与实际...针对功率预测算法下光伏最大功率点跟踪(maximum power point tracking,MPPT)系统中存在误判情况的问题,提出一种基于拉格朗日插值法改进功率预测的光伏变步长扰动观察法。首先,通过拉格朗日插值法建立插值模型,以减少预测功率值与实际功率值的偏差;其次,通过对反正切函数归一化的变步长追踪方法改善算法在辐照强度变化及追踪过程中变步长方法引起较大振荡的问题;最后,基于MATLAB/Simulink开展与传统扰动观察法及功率预测算法对比的试验。结果表明:改进功率预测变步长扰动观察法改善误判和失效问题的效果更好。展开更多
在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking,MPPT)问题,通过对粒子群(particle swarm optimization,PSO)算法的改进,提出了一种基于新...在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking,MPPT)问题,通过对粒子群(particle swarm optimization,PSO)算法的改进,提出了一种基于新型粒子群(novel particle swarm optimization,NPSO)算法的MPPT方法(以下简称NPSO_MPPT算法)。NPSO算法通过将种群粒子分为收敛粒子和自由粒子两类,提高了原始PSO算法的全局搜索能力。在Simulink环境下,分别对P&O、基于PSO算法的MPPT方法(以下简称PSO_MPPT算法)和NPSO_MPPT算法进行仿真测试,仿真结果表明,NPSO_MPPT算法相比较现有的P&O和PSO_MPPT算法,具有发电效率高和不易陷入局部功率极大值等优点。展开更多
文摘针对功率预测算法下光伏最大功率点跟踪(maximum power point tracking,MPPT)系统中存在误判情况的问题,提出一种基于拉格朗日插值法改进功率预测的光伏变步长扰动观察法。首先,通过拉格朗日插值法建立插值模型,以减少预测功率值与实际功率值的偏差;其次,通过对反正切函数归一化的变步长追踪方法改善算法在辐照强度变化及追踪过程中变步长方法引起较大振荡的问题;最后,基于MATLAB/Simulink开展与传统扰动观察法及功率预测算法对比的试验。结果表明:改进功率预测变步长扰动观察法改善误判和失效问题的效果更好。
文摘在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking,MPPT)问题,通过对粒子群(particle swarm optimization,PSO)算法的改进,提出了一种基于新型粒子群(novel particle swarm optimization,NPSO)算法的MPPT方法(以下简称NPSO_MPPT算法)。NPSO算法通过将种群粒子分为收敛粒子和自由粒子两类,提高了原始PSO算法的全局搜索能力。在Simulink环境下,分别对P&O、基于PSO算法的MPPT方法(以下简称PSO_MPPT算法)和NPSO_MPPT算法进行仿真测试,仿真结果表明,NPSO_MPPT算法相比较现有的P&O和PSO_MPPT算法,具有发电效率高和不易陷入局部功率极大值等优点。