期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
联邦学习的公平性综述
1
作者
张淑芬
张宏扬
+1 位作者
任志强
陈学斌
《计算机应用》
北大核心
2025年第1期1-14,共14页
联邦学习(FL)凭借分布式结构和隐私安全的优势快速发展,但大规模FL引发的公平性问题影响了FL系统的可持续性。针对FL的公平性问题,对近年FL公平性的研究工作进行了系统梳理和深度分析。首先,对FL的工作流程和定义进行了解释,总结了FL中...
联邦学习(FL)凭借分布式结构和隐私安全的优势快速发展,但大规模FL引发的公平性问题影响了FL系统的可持续性。针对FL的公平性问题,对近年FL公平性的研究工作进行了系统梳理和深度分析。首先,对FL的工作流程和定义进行了解释,总结了FL中的偏见和公平性概念;其次,详细归纳了FL公平性研究中常用的数据集,探讨了公平性研究所面临的挑战;最后,从数据源选择、模型优化、贡献评估和激励机制这4个方面归纳梳理了相关研究工作的优缺点、适用场景以及实验设置等,并展望了FL公平性未来的研究方向和趋势。
展开更多
关键词
联邦学习
公平性
数据选择
模型优化
贡献评估
激励机制
下载PDF
职称材料
题名
联邦学习的公平性综述
1
作者
张淑芬
张宏扬
任志强
陈学斌
机构
华北
理
工大
学
理
学
院
河北省
数据
科
学
与应用
重点
实验室
(
华北
理
工大
学
)
唐山市
大数据
安全与
智能
计算
重点
实验室
(
华北
理
工大
学
)
唐山市
数据
科
学
重点
实验室
(
华北
理
工大
学
)
出处
《计算机应用》
北大核心
2025年第1期1-14,共14页
基金
国家自然科学基金资助项目(U20A20179)。
文摘
联邦学习(FL)凭借分布式结构和隐私安全的优势快速发展,但大规模FL引发的公平性问题影响了FL系统的可持续性。针对FL的公平性问题,对近年FL公平性的研究工作进行了系统梳理和深度分析。首先,对FL的工作流程和定义进行了解释,总结了FL中的偏见和公平性概念;其次,详细归纳了FL公平性研究中常用的数据集,探讨了公平性研究所面临的挑战;最后,从数据源选择、模型优化、贡献评估和激励机制这4个方面归纳梳理了相关研究工作的优缺点、适用场景以及实验设置等,并展望了FL公平性未来的研究方向和趋势。
关键词
联邦学习
公平性
数据选择
模型优化
贡献评估
激励机制
Keywords
Federated Learning(FL)
fairness
data selection
model optimization
contribution evaluation
incentive mechanism
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
联邦学习的公平性综述
张淑芬
张宏扬
任志强
陈学斌
《计算机应用》
北大核心
2025
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部