针对电厂气体污染监测的需要,该文提出了一种融合多源无线传感器网络(Wireless Sensor Networks,WSN)与改进长短期记忆网络(Long Short Term Memory,LSTM)的气体污染监测与预警模型。通过设计多源WSN污染气体采集框架,实现了对电厂多种...针对电厂气体污染监测的需要,该文提出了一种融合多源无线传感器网络(Wireless Sensor Networks,WSN)与改进长短期记忆网络(Long Short Term Memory,LSTM)的气体污染监测与预警模型。通过设计多源WSN污染气体采集框架,实现了对电厂多种污染气体的高效采集,为预测模型提供高质量的数据输入。所设计的改进LSTM模型融合了模拟退火算法(Simulated Annealing,SA)和SVM模块,其中SA用于优化LSTM的超参数,SVM则作为分类器有效避免过拟合问题,使改进后的LSTM能够充分提取多源传感器数据的特征并进行准确预测。实验结果表明,结合SA和SVM模块有效提升了LSTM的预测性能,与其他分类算法相比表现出了明显的优势,准确率高达97.83%,相比于对比算法中表现最佳的BiLSTM提高了9.64%。展开更多
文摘针对电厂气体污染监测的需要,该文提出了一种融合多源无线传感器网络(Wireless Sensor Networks,WSN)与改进长短期记忆网络(Long Short Term Memory,LSTM)的气体污染监测与预警模型。通过设计多源WSN污染气体采集框架,实现了对电厂多种污染气体的高效采集,为预测模型提供高质量的数据输入。所设计的改进LSTM模型融合了模拟退火算法(Simulated Annealing,SA)和SVM模块,其中SA用于优化LSTM的超参数,SVM则作为分类器有效避免过拟合问题,使改进后的LSTM能够充分提取多源传感器数据的特征并进行准确预测。实验结果表明,结合SA和SVM模块有效提升了LSTM的预测性能,与其他分类算法相比表现出了明显的优势,准确率高达97.83%,相比于对比算法中表现最佳的BiLSTM提高了9.64%。