工业大数据是在工业领域信息化应用中所产生的海量数据,作为决策问题服务的大数据集、大数据技术和大数据应用的总称。首先分析工业大数据4V特性与工业数据的特有特征,以及工业大数据来源;从多源异构工业数据集成与数据融合方法、工业...工业大数据是在工业领域信息化应用中所产生的海量数据,作为决策问题服务的大数据集、大数据技术和大数据应用的总称。首先分析工业大数据4V特性与工业数据的特有特征,以及工业大数据来源;从多源异构工业数据集成与数据融合方法、工业大数据计算架构、大数据带来的信息安全等三方面论述工业大数据面临的挑战与潜在价值。探讨了工业大数据分析与挖掘方法,提出了工业大数据平台的计算架构与大数据处理平台,构建轮胎企业大数据资源中心、大数据分析与决策应用系统。从销售数据分析和宏观数据趋势两个层面进行轮胎销售大数据分析与预测。采用多个不同领域的销售数据源来解决销售预测历史数据特征空间稀疏的问题,使用LASSO(The Least Absolute Shrinkage and Selectionator Operator)方法的多任务学习方法来解决高维样本空间的缺点,实验数据验证能够提升轮胎销售预测的准确率。展开更多
协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深...协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法.展开更多
文摘工业大数据是在工业领域信息化应用中所产生的海量数据,作为决策问题服务的大数据集、大数据技术和大数据应用的总称。首先分析工业大数据4V特性与工业数据的特有特征,以及工业大数据来源;从多源异构工业数据集成与数据融合方法、工业大数据计算架构、大数据带来的信息安全等三方面论述工业大数据面临的挑战与潜在价值。探讨了工业大数据分析与挖掘方法,提出了工业大数据平台的计算架构与大数据处理平台,构建轮胎企业大数据资源中心、大数据分析与决策应用系统。从销售数据分析和宏观数据趋势两个层面进行轮胎销售大数据分析与预测。采用多个不同领域的销售数据源来解决销售预测历史数据特征空间稀疏的问题,使用LASSO(The Least Absolute Shrinkage and Selectionator Operator)方法的多任务学习方法来解决高维样本空间的缺点,实验数据验证能够提升轮胎销售预测的准确率。
文摘协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法.