Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such ...Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such supports has been challenging.Herein,we report an innovative strategy for the fabrication of high-density single-atoms(Rh,Ru,Pd)catalysts on CaAl-layered double hydroxides(CaAl-LDH)via isomorphous substitution.The Rh species have occupied Ca^(2+)vacancies within CaAl-LDH laminate by ion-exchange,facilitating a substantial loading of isolated Rh single-atoms.Such catalysts displayed superior performance in the selective hydrogenation to quinoline,pivotal for liquid organic hydrogen storage,and the universality for the hydrogenation of N-heterocyclic aromatic hydrocarbons was also verified.Combining the experimental results and density functional theory calculations,the pathway of quinoline hydrogenation over Rh1CaAl-LDH was proposed.This synthetic strategy marks a significant advancement in the field of single-atom catalysts,expanding their horizons in green chemical processes.展开更多
文摘Metal oxides as support for constructing precious metal single-atom catalysts hold great promise for a wide range of industrial applications,but achieving a high-loading of thermally stable metal single atoms on such supports has been challenging.Herein,we report an innovative strategy for the fabrication of high-density single-atoms(Rh,Ru,Pd)catalysts on CaAl-layered double hydroxides(CaAl-LDH)via isomorphous substitution.The Rh species have occupied Ca^(2+)vacancies within CaAl-LDH laminate by ion-exchange,facilitating a substantial loading of isolated Rh single-atoms.Such catalysts displayed superior performance in the selective hydrogenation to quinoline,pivotal for liquid organic hydrogen storage,and the universality for the hydrogenation of N-heterocyclic aromatic hydrocarbons was also verified.Combining the experimental results and density functional theory calculations,the pathway of quinoline hydrogenation over Rh1CaAl-LDH was proposed.This synthetic strategy marks a significant advancement in the field of single-atom catalysts,expanding their horizons in green chemical processes.