期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于HGTC−YOLOv8n模型的煤矸识别算法研究 被引量:2
1
作者 滕文想 王成 费树辉 《工矿自动化》 CSCD 北大核心 2024年第5期52-59,共8页
现有基于深度学习的煤矸识别方法在煤矿井下低照度、高噪声及运动模糊等复杂工况下存在煤矸识别精度低、小目标煤矸容易漏检、模型参数量和运算量大,难以部署到计算资源有限的设备中等问题,提出了一种基于HGTC−YOLOv8n模型的煤矸识别算... 现有基于深度学习的煤矸识别方法在煤矿井下低照度、高噪声及运动模糊等复杂工况下存在煤矸识别精度低、小目标煤矸容易漏检、模型参数量和运算量大,难以部署到计算资源有限的设备中等问题,提出了一种基于HGTC−YOLOv8n模型的煤矸识别算法。采用HGNetv2网络替换YOLOv8n的主干网络,通过多尺度特征的有效提取,提高煤矸识别效果并减少模型的存储需求和计算资源消耗;在主干网络中嵌入三重注意力机制模块Triplet Attention,捕获不同维度间的交互信息,增强煤矸图像目标特征的提取,减少无关信息的干扰;选用内容感知特征重组模块(CARAFE)来改进YOLOv8n颈部特征融合网络上采样算子,利用上下文信息提高感受视野,提高小目标煤矸识别准确率。实验结果表明:①HGTC−YOLOv8n模型的平均精度均值为93.5%,模型的参数量为2.645×10^(6),浮点运算量为8.0×10^(9),帧速率为79.36帧/s。②平均精度均值较YOLOv8n模型提升了2.5%,参数量和浮点运算量较YOLOv8n模型分别下降了16.22%和10.11%。③与YOLO系列模型相比,HGTC−YOLOv8n模型的平均精度均值最高,且参数量和浮点运算量最少,检测速度较快,综合检测性能最佳。④基于HGTC−YOLOv8n模型的煤矸识别算法在煤矿井下复杂工况下,改善了煤矸识别精度低、小目标煤矸容易漏检等问题,满足煤矸图像实时检测要求。 展开更多
关键词 煤矸识别 小目标识别 YOLOv8n 内容感知特征重组模块 三重注意力机制 Triplet Attention HGNetv2
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部