期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合萤火虫方法的多标签懒惰学习算法 被引量:4
1
作者 程玉胜 钱坤 +1 位作者 王一宾 赵大卫 《计算机应用》 CSCD 北大核心 2019年第5期1305-1311,共7页
已有的多标签懒惰学习算法(IMLLA)在利用近邻标签时因仅考虑了近邻标签相关性信息,而忽略相似度的影响,这可能会使算法的鲁棒性有所降低。针对这个问题,引入萤火虫方法,将相似度信息与标签信息相结合,提出一种融合萤火虫方法的多标签懒... 已有的多标签懒惰学习算法(IMLLA)在利用近邻标签时因仅考虑了近邻标签相关性信息,而忽略相似度的影响,这可能会使算法的鲁棒性有所降低。针对这个问题,引入萤火虫方法,将相似度信息与标签信息相结合,提出一种融合萤火虫方法的多标签懒惰学习算法(FF-MLLA)。首先,利用Minkowski距离来度量样本间相似度,从而找到近邻点;然后,结合标签近邻点和萤火虫方法对标签计数向量进行改进;最后,使用奇异值分解(SVD)与核极限学习机(ELM)进行线性分类。该算法同时考虑了标签信息与相似度信息从而提高了鲁棒性。实验结果表明,所提算法较其他的多标签学习算法有一定优势,并使用统计假设检验与稳定性分析进一步说明所提出算法的合理性与有效性。 展开更多
关键词 多标签学习 萤火虫方法 标签相关性 多标签懒惰学习算法 极限学习机
下载PDF
基于分类间隔增强的不平衡多标签学习算法 被引量:2
2
作者 程玉胜 曹天成 《数据采集与处理》 CSCD 北大核心 2021年第3期519-528,共10页
传统的多标签学习算法一般没有考虑标签的不均衡性,从而忽略了标签不平衡给分类带来的影响。但统计发现,目前常用的多标签数据集均存在标签不均衡问题,且少数类标签往往更加重要。基于此,本文提出了一种基于分类间隔增强的不平衡多标签... 传统的多标签学习算法一般没有考虑标签的不均衡性,从而忽略了标签不平衡给分类带来的影响。但统计发现,目前常用的多标签数据集均存在标签不均衡问题,且少数类标签往往更加重要。基于此,本文提出了一种基于分类间隔增强的不平衡多标签学习算法(Imbalanced multi-label learning algorithm based on classification interval enhanced,MLCIE),旨在利用各标签分类间隔的重构来增强分类器对少数类标签样本的学习效率,提升样本标签质量,从而减少多标签不平衡对分类器学习精度的影响。首先利用各标签密度与条件熵计算各标签的不确定性系数;然后构建分类间隔增强矩阵,将各标签独有的密度信息融入到原始标签矩阵中,获取平衡的标签空间;最后使用极限学习机作为线性分类器进行分类。本文在11个多标签标准数据集上与其他7种多标签学习算法进行对比实验,结果表明本文算法在解决标签不平衡问题上有一定效果。 展开更多
关键词 多标签学习 标签不平衡 分类间隔 标签密度 极限学习机
下载PDF
基于负相关性增强的不平衡多标签学习算法 被引量:1
3
作者 程玉胜 曹天成 +1 位作者 王一宾 郑伟杰 《计算机工程与科学》 CSCD 北大核心 2021年第9期1700-1710,共11页
由于标签空间过大,标签分布不平衡问题在多标签数据集中广泛存在,解决该问题在一定程度上可以提高多标签学习的分类性能。通过标签相关性提升分类性能是解决该问题的一种最常见的有效策略,众多学者进行了大量研究,然而这些研究更多地是... 由于标签空间过大,标签分布不平衡问题在多标签数据集中广泛存在,解决该问题在一定程度上可以提高多标签学习的分类性能。通过标签相关性提升分类性能是解决该问题的一种最常见的有效策略,众多学者进行了大量研究,然而这些研究更多地是采用基于正相关性策略提升性能。在实际问题中,除了正相关性外,标签的负相关性也可能存在,如果在考虑正相关性的同时,兼顾负相关性,无疑能够进一步改善分类器的性能。基于此,提出了一种基于负相关性增强的不平衡多标签学习算法——MLNCE,旨在解决多标签不平衡问题的同时,兼顾标签间的正负相关性,从而提高多标签分类器的分类性能。首先利用标签密度信息改造标签空间;然后在密度标签空间中探究标签真实的正反相关性信息,并添加到分类器目标函数中;最后利用加速梯度下降法求解输出权重以得到预测结果。在11个多标签标准数据集上与其他6种多标签学习算法进行对比实验,结果表明MLNCE算法可以有效提高分类精度。 展开更多
关键词 多标签学习 多标签不平衡 标签正负相关性 标签密度 加速梯度下降法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部