【目的】比较正交和均匀设计两种多因素试验方法在水悬浮剂配方中应用的优缺点,为该方法在农药制剂学领域的应用提供参考。【方法】在采用流点法初筛得到润湿性能良好的润湿分散剂之后,分别采用正交设计和均匀设计制备30%噻虫胺悬浮剂...【目的】比较正交和均匀设计两种多因素试验方法在水悬浮剂配方中应用的优缺点,为该方法在农药制剂学领域的应用提供参考。【方法】在采用流点法初筛得到润湿性能良好的润湿分散剂之后,分别采用正交设计和均匀设计制备30%噻虫胺悬浮剂。综合考察润湿分散剂和黏度调节剂对制剂热贮析水率、离心沉淀率、黏度、流动性、分散性、热贮前后样品的粒度分布(D10、D50和D90)和悬浮率的影响。通过主效应图分析正交试验结果,采用逐步回归和偏最小二乘法(PLS)分析均匀试验结果,最后检验优化配方的各项性能。【结果】正交试验和均匀试验的所有样品黏度均在144.50—317.84 m Pa·s,均具有良好(良级或优级)的流动性和分散性。由于奥氏熟化作用,样品经热贮后,粒子的粒径轻微增大,D10、D50和D90分别由0.56—1.00、0.88—1.53和1.77—2.68μm变为0.76—1.02、1.12—1.56和2.07—3.25μm。所有样品贮前悬浮率均在91.88%—96.39%,经热贮后样品的悬浮率变化不大,分别在91.91%—96.13%,符合悬浮剂质量控制的一般要求,故本研究主要优化了热贮析水率和离心沉淀率两个指标。正交试验分析结果表明,T2700、黄原胶和硅酸镁铝的用量对热贮析水率和离心沉淀率均有显著影响,且均随用量增加而降低,而NR1601的用量对两个因变量的影响不显著。采用正交设计优化的配方,样品黏度为229.6 m Pa·s,流动性和分散性良好,热贮前后悬浮率分别为(94.76±0.70)%和(93.50±0.20)%,热贮析水率为(4.23±0.19)%,离心沉淀率也低于10%。均匀设计中,PLS平方项模型对热贮析水率有良好的预测性,热贮析水率为(2.55±0.03)%,离心沉淀率也仅为(4.36±0.21)%,优化样品的黏度为324.16 m Pa·s,流动性和分散性良好,热贮前后悬浮率分别为(93.19±0.09)%和(92.77±0.22)%,粒子的粒径小且分布较窄。PLS线性模型对离心沉淀率表现出良好的预测性,优化配方的离心沉淀率为(7.75±0.14)%,热贮析水率为(5.24±0.19)%。逐步回归模型对因变量的预测性均较差,优化配方也并非最优配方,热贮析水率为(9.51±0.20)%,离心沉淀率也高达(16.63±0.19)%。采用双重筛选逐步回归和PLS可以同时优化热贮析水率和离心沉淀率两个因变量,其中前者优化的模型拟合性比后者好,但其优化配方也并非最优配方。【结论】正交设计试验次数较多,但数据分析方法简单易掌握,采用主效应图结合方差分析即可有效地优化30%噻虫胺悬浮剂配方。均匀设计的稳健性差于正交设计,但其试验次数少,可有效降低试验成本,若能掌握其复杂的统计及分析方法,也可以获得理想的优化配方。展开更多
文摘【目的】比较正交和均匀设计两种多因素试验方法在水悬浮剂配方中应用的优缺点,为该方法在农药制剂学领域的应用提供参考。【方法】在采用流点法初筛得到润湿性能良好的润湿分散剂之后,分别采用正交设计和均匀设计制备30%噻虫胺悬浮剂。综合考察润湿分散剂和黏度调节剂对制剂热贮析水率、离心沉淀率、黏度、流动性、分散性、热贮前后样品的粒度分布(D10、D50和D90)和悬浮率的影响。通过主效应图分析正交试验结果,采用逐步回归和偏最小二乘法(PLS)分析均匀试验结果,最后检验优化配方的各项性能。【结果】正交试验和均匀试验的所有样品黏度均在144.50—317.84 m Pa·s,均具有良好(良级或优级)的流动性和分散性。由于奥氏熟化作用,样品经热贮后,粒子的粒径轻微增大,D10、D50和D90分别由0.56—1.00、0.88—1.53和1.77—2.68μm变为0.76—1.02、1.12—1.56和2.07—3.25μm。所有样品贮前悬浮率均在91.88%—96.39%,经热贮后样品的悬浮率变化不大,分别在91.91%—96.13%,符合悬浮剂质量控制的一般要求,故本研究主要优化了热贮析水率和离心沉淀率两个指标。正交试验分析结果表明,T2700、黄原胶和硅酸镁铝的用量对热贮析水率和离心沉淀率均有显著影响,且均随用量增加而降低,而NR1601的用量对两个因变量的影响不显著。采用正交设计优化的配方,样品黏度为229.6 m Pa·s,流动性和分散性良好,热贮前后悬浮率分别为(94.76±0.70)%和(93.50±0.20)%,热贮析水率为(4.23±0.19)%,离心沉淀率也低于10%。均匀设计中,PLS平方项模型对热贮析水率有良好的预测性,热贮析水率为(2.55±0.03)%,离心沉淀率也仅为(4.36±0.21)%,优化样品的黏度为324.16 m Pa·s,流动性和分散性良好,热贮前后悬浮率分别为(93.19±0.09)%和(92.77±0.22)%,粒子的粒径小且分布较窄。PLS线性模型对离心沉淀率表现出良好的预测性,优化配方的离心沉淀率为(7.75±0.14)%,热贮析水率为(5.24±0.19)%。逐步回归模型对因变量的预测性均较差,优化配方也并非最优配方,热贮析水率为(9.51±0.20)%,离心沉淀率也高达(16.63±0.19)%。采用双重筛选逐步回归和PLS可以同时优化热贮析水率和离心沉淀率两个因变量,其中前者优化的模型拟合性比后者好,但其优化配方也并非最优配方。【结论】正交设计试验次数较多,但数据分析方法简单易掌握,采用主效应图结合方差分析即可有效地优化30%噻虫胺悬浮剂配方。均匀设计的稳健性差于正交设计,但其试验次数少,可有效降低试验成本,若能掌握其复杂的统计及分析方法,也可以获得理想的优化配方。
文摘为筛选能有效防除节节麦Aegilops tauschii的除草剂及助剂,通过室内盆栽法评价11种除草剂对节节麦的防除效果,分析比较15种不同助剂对其中2种除草剂甲基二磺隆和异丙隆的增效作用,并明确其最适配比。结果显示,在供试11种除草剂中,甲基二磺隆和异丙隆对节节麦具有较的好防除效果,当其施药量分别为13、1 000 g (a.i.)/hm2时,对节节麦的鲜重抑制率分别达68.40%和76.46%,其余9种除草剂的防除效果较差,鲜重抑制率在4.62%~35.95%之间;筛选到对甲基二磺隆有显著增效作用的2种助剂——乙基和甲基酯植物油、有机硅408,其最适用量分别为甲基二磺隆喷液量的0.5%和0.2%(体积比),增效分别为15.21%和26.52%;筛选到对异丙隆有显著增效作用的3种助剂——异十三醇聚氧乙烯醚、聚醚改性七甲基三硅氧烷、乙基和甲基酯植物油,其最适用量分别为异丙隆喷液量的0.1%、0.05%、0.25%(体积比),增效分别为26.24%、21.80%和25.99%。表明甲基二磺隆、异丙隆可用于防除节节麦,添加助剂可进一步提高其对节节麦的防除效果。