设(X,d)是一个紧的距离空间,T是(X,d)上的连续变换.利用平均遍历定理证明了:对任意的x∈X,1/n sum from i=0 to n-1 f(T^i x)在C(X)上收敛.该结果是连续变换的Birkhoff型个别遍历定理的推广.由此结果研究了T的其它遍历性质,特别,不依赖...设(X,d)是一个紧的距离空间,T是(X,d)上的连续变换.利用平均遍历定理证明了:对任意的x∈X,1/n sum from i=0 to n-1 f(T^i x)在C(X)上收敛.该结果是连续变换的Birkhoff型个别遍历定理的推广.由此结果研究了T的其它遍历性质,特别,不依赖深刻的Choquet积分表示定理,给出了遍历分解定理的一个较为简单而直接的证明.展开更多
文摘设(X,d)是一个紧的距离空间,T是(X,d)上的连续变换.利用平均遍历定理证明了:对任意的x∈X,1/n sum from i=0 to n-1 f(T^i x)在C(X)上收敛.该结果是连续变换的Birkhoff型个别遍历定理的推广.由此结果研究了T的其它遍历性质,特别,不依赖深刻的Choquet积分表示定理,给出了遍历分解定理的一个较为简单而直接的证明.