An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ...An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating process and a subsequent combined surface modification of bis-[triethoxysilylpropyl]tetrasulfide(BTESPT)silane and Ce(NO3)3.The microstructure and composition characteristics of the hybrid coatings were investigated by means of X-ray diffraction(XRD),scanning electronic microscopy(SEM),Fourier transform infrared spectrophotometry(FT-IR)and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the coated samples was evaluated by potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution rate during immersion in 3.5 wt.%NaCl solution.The results show an improved corrosion resistance of the alloy in the presence of BTESPT silane and Ce(NO3)3.This is most likely due to the synergistic effect of steam coating and silane coating to enhance the barrier properties of hybrid coating.In addition,the formation mechanism and anti-corrosion mechanism of coatings were discussed.展开更多
The influence of intermetallic Al-Mn particles on the corrosion behavior of in-situ formed Mg-Al layered double hydroxide(Mg-Al-CO32--LDH)steam coating on AZ31 Mg alloy was investigated.The alloy was pretreated with H...The influence of intermetallic Al-Mn particles on the corrosion behavior of in-situ formed Mg-Al layered double hydroxide(Mg-Al-CO32--LDH)steam coating on AZ31 Mg alloy was investigated.The alloy was pretreated with H3PO4,HCl,HNO3or citric acid(CA),followed by hydrothermal treatment,for the fabrication of Mg-Al-LDH coating.The microstructure,composition and corrosion resistance of the coated samples were investigated.The results showed that the surface area fraction of Al-Mn phase exposed on the surface of the alloy was significantly increased after CA pretreatment,which promotes the growth of the Mg-Al-LDH steam coating.Further,the LDH-coated alloy pretreated with CA possessed the most compact surface and the maximum coating thickness among all the coatings.The corrosion current density of the coated alloy was decreased by three orders of magnitude as compared to that of the bare alloy.展开更多
A Schiff base(a compound containing a C=N bond)induced anodic Ca−P coating was prepared on AZ31 Mg alloy in a mixed solution of CaCl_(2) and KH_(2)PO_(4) at 60℃ in the presence of glucose and L-cysteine.The microstru...A Schiff base(a compound containing a C=N bond)induced anodic Ca−P coating was prepared on AZ31 Mg alloy in a mixed solution of CaCl_(2) and KH_(2)PO_(4) at 60℃ in the presence of glucose and L-cysteine.The microstructure and chemical composition of the coatings were characterized using FE-SEM,FT-IR,XRD,and XPS.The in vitro degradation resistance of the coated samples was evaluated via potentiodynamic polarization(PDP),electrochemical impedance spectroscopy(EIS),and hydrogen evolution test.The experimental results show that the Ca−PSchiff base coating is composed of CaHPO_(4)(DCPA)and hydroxyapatite(HA),whereas HA is not present in the Ca−P coating.The Ca−P_(Schiff base) coating thickness is about 2 times that of Ca−P coating(Ca−P coating:(9.13±4.20)μm and Ca−P_(Schiff base):(18.13±5.78)μm).The corrosion current density of the Ca−P_(Schiff base) coating is two orders of magnitude lower than that of the Ca−P coating.The formation mechanism of the Ca−P_(Schiff base) is proposed.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51601108,52071191)the Natural Science Foundation of Shandong Province,China (No.ZR2020ME011).
基金Projects(51601108,21676285,51571134)supported by the National Natural Science Foundation of ChinaProject(2017RCJJ015)supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,ChinaProject(2014TDJH104)supported by the Shandong University of Science and Technology Research Fund,China。
文摘An environmentally-friendly hybrid coating on AZ31 magnesium alloy substrates was reported.The synergic effect was studied on Mg−Al-layered double hydroxide Mg−Al LDH/Mg(OH)2-coated AZ31 magnesium alloy via an in-situ steam coating process and a subsequent combined surface modification of bis-[triethoxysilylpropyl]tetrasulfide(BTESPT)silane and Ce(NO3)3.The microstructure and composition characteristics of the hybrid coatings were investigated by means of X-ray diffraction(XRD),scanning electronic microscopy(SEM),Fourier transform infrared spectrophotometry(FT-IR)and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the coated samples was evaluated by potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution rate during immersion in 3.5 wt.%NaCl solution.The results show an improved corrosion resistance of the alloy in the presence of BTESPT silane and Ce(NO3)3.This is most likely due to the synergistic effect of steam coating and silane coating to enhance the barrier properties of hybrid coating.In addition,the formation mechanism and anti-corrosion mechanism of coatings were discussed.
基金supported by the National Natural Science Foundation of China(Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province,China(No.ZR2020ME011)。
文摘The influence of intermetallic Al-Mn particles on the corrosion behavior of in-situ formed Mg-Al layered double hydroxide(Mg-Al-CO32--LDH)steam coating on AZ31 Mg alloy was investigated.The alloy was pretreated with H3PO4,HCl,HNO3or citric acid(CA),followed by hydrothermal treatment,for the fabrication of Mg-Al-LDH coating.The microstructure,composition and corrosion resistance of the coated samples were investigated.The results showed that the surface area fraction of Al-Mn phase exposed on the surface of the alloy was significantly increased after CA pretreatment,which promotes the growth of the Mg-Al-LDH steam coating.Further,the LDH-coated alloy pretreated with CA possessed the most compact surface and the maximum coating thickness among all the coatings.The corrosion current density of the coated alloy was decreased by three orders of magnitude as compared to that of the bare alloy.
基金supported by the National Natural Science Foundation of China(No.52071191)the Open Foundation of Hubei Key Laboratory of Advanced Technology for Automotive Components,China(No.XDQCKF2021006)。
文摘A Schiff base(a compound containing a C=N bond)induced anodic Ca−P coating was prepared on AZ31 Mg alloy in a mixed solution of CaCl_(2) and KH_(2)PO_(4) at 60℃ in the presence of glucose and L-cysteine.The microstructure and chemical composition of the coatings were characterized using FE-SEM,FT-IR,XRD,and XPS.The in vitro degradation resistance of the coated samples was evaluated via potentiodynamic polarization(PDP),electrochemical impedance spectroscopy(EIS),and hydrogen evolution test.The experimental results show that the Ca−PSchiff base coating is composed of CaHPO_(4)(DCPA)and hydroxyapatite(HA),whereas HA is not present in the Ca−P coating.The Ca−P_(Schiff base) coating thickness is about 2 times that of Ca−P coating(Ca−P coating:(9.13±4.20)μm and Ca−P_(Schiff base):(18.13±5.78)μm).The corrosion current density of the Ca−P_(Schiff base) coating is two orders of magnitude lower than that of the Ca−P coating.The formation mechanism of the Ca−P_(Schiff base) is proposed.