利用KMeans聚类算法进行聚类过程中,有可能会产生孤立聚点,这种情况一旦发生,会严重影响算法的聚类效果。为避免产生孤立聚点,本文改进了KMeans聚类算法,设计了一类重心随机漂移(Center Random Drift,简称CRD)KMeans聚类算法。该算法会...利用KMeans聚类算法进行聚类过程中,有可能会产生孤立聚点,这种情况一旦发生,会严重影响算法的聚类效果。为避免产生孤立聚点,本文改进了KMeans聚类算法,设计了一类重心随机漂移(Center Random Drift,简称CRD)KMeans聚类算法。该算法会首先判断生成的聚点是否是孤立聚点,利用CRD算法对孤立聚点进行替换,从而有效避免了孤立聚点的产生。通过在Matlab环境下进行图像聚类对比实验发现,针对色彩丰富的图片,新算法和传统KMeans算法性能没有明显差异,而针对图片色彩比较单一的图片,传统的KMeans聚类算法聚类效果不佳,新算法依然可以有效聚类。展开更多
文摘利用KMeans聚类算法进行聚类过程中,有可能会产生孤立聚点,这种情况一旦发生,会严重影响算法的聚类效果。为避免产生孤立聚点,本文改进了KMeans聚类算法,设计了一类重心随机漂移(Center Random Drift,简称CRD)KMeans聚类算法。该算法会首先判断生成的聚点是否是孤立聚点,利用CRD算法对孤立聚点进行替换,从而有效避免了孤立聚点的产生。通过在Matlab环境下进行图像聚类对比实验发现,针对色彩丰富的图片,新算法和传统KMeans算法性能没有明显差异,而针对图片色彩比较单一的图片,传统的KMeans聚类算法聚类效果不佳,新算法依然可以有效聚类。