期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多随机经验核的弥漫大B细胞淋巴瘤复发预测
1
作者 李雪玲 赵艳琳 +8 位作者 张岩波 余红梅 周洁 李琼 王俊霞 乔宇 张高源 赵志强 罗艳虹 《中国卫生统计》 CSCD 北大核心 2024年第3期339-343,共5页
目的基于多随机经验核分类器构建弥漫大B细胞淋巴瘤完全缓解后两年内复发情况的预测模型,为患者的治疗提供决策依据。方法利用山西省某三甲医院2010-2020年电子病历库中符合本研究要求的445名患者信息,基于五种常见类别不平衡处理方法... 目的基于多随机经验核分类器构建弥漫大B细胞淋巴瘤完全缓解后两年内复发情况的预测模型,为患者的治疗提供决策依据。方法利用山西省某三甲医院2010-2020年电子病历库中符合本研究要求的445名患者信息,基于五种常见类别不平衡处理方法以及多随机经验核分类器构建复发预测模型,并与五种分类器进行比较。结果基于SMOTE Tomek Links+多随机经验核分类器的复发预测模型取得了最优的分类性能(accuracy=0.89,precision=0.87,recall=0.92,f1-Score=0.89,brier score=0.11)。结论对DLBCL实际数据集,本文使用SMOTE Tomek links处理不平衡数据并构建多随机经验核模型,模型性能达到最优的同时计算复杂度也不高,可为DLBCL复发预测提供有力参考。 展开更多
关键词 弥漫大B细胞淋巴瘤 复发预测 经验核映射 类别不平衡
下载PDF
基于高斯混合模型双向聚类重采样和随机森林构建DLBCL早期复发预测模型
2
作者 王俊霞 张岩波 +9 位作者 余红梅 曹红艳 周洁 乔宇 张高源 于凯 王雪嫚 郭玉娇 赵志强 罗艳虹 《中国卫生统计》 北大核心 2025年第1期7-11,17,共6页
目的应用一种可以同时解决少数类和多数类类间和类内不平衡问题的类别不平衡处理方法,并将其与随机森林(random forest,RF)分类器结合实现对弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者早期复发的预测,为DLBLC患者的... 目的应用一种可以同时解决少数类和多数类类间和类内不平衡问题的类别不平衡处理方法,并将其与随机森林(random forest,RF)分类器结合实现对弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者早期复发的预测,为DLBLC患者的治疗提供参考。方法首先使用一种基于高斯混合模型双向聚类重采样的类别不平衡处理方法(Gaussian mixture model,GMM-GMM)处理数据,并与随机过采样(random over sampling,ROS)、合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)、Borderline-1 SMOTE、Borderline-2 SMOTE、GMM上采样、GMM下采样、SMOTE+RUS、SMOTE+GMM和GMM+RUS进行比较,然后以RF作为分类器验证10种类别不平衡方法的性能,之后为验证RF的性能,在处理后的数据集上使用logistic回归和决策树(decision tree,DT)作为对照,最后从区分度和校准度两方面对模型进行评价。结果在本文所有模型中,采用GMM-GMM的RF模型取得了相对最优的分类性能(accuracy=0.79,AUC=0.87,sensitivity=0.71,specificity=0.87,G-means=0.79,MSE=0.21)。结论GMM-GMM优于其他传统的重采样方法,结合RF用于DLBCL患者早期复发的预测取得了相对较好的分类结果,可以很好地实现对DLBCL患者早期复发的预测。 展开更多
关键词 类别不平衡 高斯混合模型聚类重采样 随机森林 复发预测 弥漫大B细胞淋巴瘤
下载PDF
基于SMOTE-ENN和深度森林的弥漫大B细胞淋巴瘤复发风险预测
3
作者 乔宇 张岩波 +9 位作者 余红梅 曹红艳 周洁 王俊霞 张高源 于凯 王雪嫚 郭玉娇 赵志强 罗艳虹 《中国卫生统计》 北大核心 2025年第1期67-72,共6页
目的对山西省某肿瘤医院血液科2011—2020年被确诊为弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)并经过治疗达到完全缓解(complete response,CR)的498例患者构建2年内的复发风险预测模型,为患者的临床治疗提供参考。方... 目的对山西省某肿瘤医院血液科2011—2020年被确诊为弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)并经过治疗达到完全缓解(complete response,CR)的498例患者构建2年内的复发风险预测模型,为患者的临床治疗提供参考。方法第一步使用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)特征选择算法并结合临床医师意见筛选出对DLBCL达到CR的患者两年复发率影响较大的21个变量因素,第二步用SMOTE(synthetic minority oversampling technique)与SMOTE-ENN(synthetic minority oversampling technique and edited nearest neighbor)两种不平衡方法处理数据,将原始未处理数据和两种不平衡方法处理后的数据分别使用7种分类器进行模型预测。第三步用深度森林(deep forest,DF)做复发风险预测模型。第四步使用准确率(accuracy)、查准率(precision)、灵敏度/召回率(sensitivity/recall)、特异度(specificity)、F1值(F1-score)和G均值(G-means)比较模型分类性能,采用Brier分数(Brier score,BS)评价模型校准度。结果SMOTE-ENN不平衡方法下的深度森林算法表现最好(accuracy=0.932,precision=0.949,recall=0.944,specificity=0.910,F1-score=0.946,G-means=0.926,Brier score=0.068)。结论本文使用SMOTE-ENN不平衡方法与深度森林分类器结合的方法,对完全缓解的DLBCL患者两年复发进行预测,模型达到预期效果。 展开更多
关键词 弥漫性大B细胞淋巴瘤 不平衡数据 复发预测 深度森林
下载PDF
基于SMOTE-ENN结合改进动态集成选择算法构建DLBCL患者2年内复发预测模型
4
作者 张高源 赵瑞青 +9 位作者 张岩波 余红梅 周洁 乔宇 王俊霞 王雪嫚 于凯 郭玉娇 赵志强 罗艳虹 《中国卫生统计》 北大核心 2025年第1期50-55,61,共7页
目的构建基于FIRE动态集成选择(frienemy indecision region dynamic ensemble selection,FIRE-DES)的弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者治疗达到完全缓解后两年内复发情况的预测模型,为患者的治疗提供决策... 目的构建基于FIRE动态集成选择(frienemy indecision region dynamic ensemble selection,FIRE-DES)的弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者治疗达到完全缓解后两年内复发情况的预测模型,为患者的治疗提供决策依据。方法收集山西省某三甲医院2010年1月至2020年1月经治疗后达到完全缓解的498名患者信息,构建基于四种常见类别不平衡处理方法的FIRE-DES复发预测模型,并与传统的五种单一分类器与两种集成分类器进行比较。结果四种类别不平衡算法中SMOTE-ENN(synthetic minority oversampling technique and edited nearest neighbor)算法取得了最优分类性能,在此基础上采用DESP(dynamic ensemble selection performance)、KNORAU(K-nearest oracle union)和META-DES(meta-learning for dynamic ensemble selection)动态集成选择算法的分类效果明显优于传统的单一分类器以及集成分类器模型,基于FIRE改进的DESP、KNORAU和META-DES动态选择算法的分类效果在其基础上实现了进一步提升,且FIRE-META-DES取得了最优的分类性能(准确率=0.909,精确率=0.906,召回率=0.967,ROC曲线下面积=0.879,F1-Score=0.936,Brier Score=0.088)。结论针对DLBCL实际数据集,本文SMOTE-ENN+FIRE-META-DES的复发预测模型在性能上达到最优,可为DLBCL复发预测提供有力参考。 展开更多
关键词 弥漫大B细胞淋巴瘤 复发预测 类别不平衡 动态集成选择
下载PDF
深度神经网络在不规则弥漫大B细胞淋巴瘤时间序列数据分类预测中的应用
5
作者 李琼 张岩波 +8 位作者 余红梅 周洁 赵艳琳 李雪玲 王俊霞 张高源 乔宇 赵志强 罗艳虹 《中国卫生统计》 CSCD 北大核心 2024年第2期190-193,199,共5页
目的探讨深度神经网络在不规则时间序列数据中的分类效果,并对山西某医院2014-2020年362例弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者进行复发预测。方法回顾性地收集了确诊且治疗后达到完全缓解的362例DLBCL患者的... 目的探讨深度神经网络在不规则时间序列数据中的分类效果,并对山西某医院2014-2020年362例弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者进行复发预测。方法回顾性地收集了确诊且治疗后达到完全缓解的362例DLBCL患者的病例资料,并预测其两年内的复发。先利用LASSO回归进行变量的筛选,再构建基于GRU-ODE-Bayes(gated recurrent unirt-ordinary differential equation-Bayes)的不规则时间序列深度神经网络模型,并与传统模型及其他深度神经网络模型进行比较。结果在本文的所有模型中,传统模型的分类性能不及深度神经网络模型。其中GRU-ODE-Bayes模型最优,其AUC为0.85,灵敏度为0.84,特异度为0.71,G-means为0.77。结论关于不规则DLBCL时间序列数据,与本文其他模型相比,GRU-ODE-Bayes模型可以更精准地预测DLBCL患者的复发情况,可为患者个性化治疗和医生决策提供参考。 展开更多
关键词 弥漫大B细胞淋巴瘤 不规则时间序列数据 复发预测 深度神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部