期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于注意力与多尺度的4类脑电信号解码
被引量:
1
1
作者
任玲玲
王力
+1 位作者
黄学文
詹倩倩
《科学技术与工程》
北大核心
2022年第34期15180-15187,共8页
为了增加主动式脑-机接口(BCI)指令集的数量,提出了一种基于运动想象和言语想象的时序编码实验范式。通过将1个运动想象和1个言语想象分时序进行,获得了4类想象方式:运动想象;言语想象;先运动想象再言语想象;先言语想象再运动想象。针...
为了增加主动式脑-机接口(BCI)指令集的数量,提出了一种基于运动想象和言语想象的时序编码实验范式。通过将1个运动想象和1个言语想象分时序进行,获得了4类想象方式:运动想象;言语想象;先运动想象再言语想象;先言语想象再运动想象。针对上述实验范式的脑电信号设计一种基于注意力与多尺度神经网络(AMEEGNet):首先通过1个空洞卷积和3个不同大小尺度的二维卷积提取信号的鲁棒性时间表示;然后使用深度卷积和可分离卷积提取空间特征和频域特征;此外,在模型中添加挤压激励模块,以自适应提取具有高分类精度的特征;最后采用一个具有全连接的网络层进行分类。该模型在拥有4类想象的时序编码实验数据集上获得了71.1%的平均准确度,且在同一数据集上EEGNet、MMCNN、Shallow ConvNet、TSGL-EEGNet分别取得57.9%、60.5%、68.3%、68.4%的精度,可见所提模型识别准确率最高。
展开更多
关键词
脑-机接口
运动想象
言语想象
时序编码
多尺度卷积
注意力
下载PDF
职称材料
题名
基于注意力与多尺度的4类脑电信号解码
被引量:
1
1
作者
任玲玲
王力
黄学文
詹倩倩
机构
广州
大学电子与通信工程学院
广州市信息处理与传输重点实验室
出处
《科学技术与工程》
北大核心
2022年第34期15180-15187,共8页
基金
广州市科技计划(201904010466)。
文摘
为了增加主动式脑-机接口(BCI)指令集的数量,提出了一种基于运动想象和言语想象的时序编码实验范式。通过将1个运动想象和1个言语想象分时序进行,获得了4类想象方式:运动想象;言语想象;先运动想象再言语想象;先言语想象再运动想象。针对上述实验范式的脑电信号设计一种基于注意力与多尺度神经网络(AMEEGNet):首先通过1个空洞卷积和3个不同大小尺度的二维卷积提取信号的鲁棒性时间表示;然后使用深度卷积和可分离卷积提取空间特征和频域特征;此外,在模型中添加挤压激励模块,以自适应提取具有高分类精度的特征;最后采用一个具有全连接的网络层进行分类。该模型在拥有4类想象的时序编码实验数据集上获得了71.1%的平均准确度,且在同一数据集上EEGNet、MMCNN、Shallow ConvNet、TSGL-EEGNet分别取得57.9%、60.5%、68.3%、68.4%的精度,可见所提模型识别准确率最高。
关键词
脑-机接口
运动想象
言语想象
时序编码
多尺度卷积
注意力
Keywords
brain-computer interface
motor imagery
speech imagery
sequential coding
multiscale convolution
attention
分类号
TN911.7 [电子电信—通信与信息系统]
R318 [医药卫生—生物医学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于注意力与多尺度的4类脑电信号解码
任玲玲
王力
黄学文
詹倩倩
《科学技术与工程》
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部