密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法是一种新型的基于密度的聚类算法,通过选取自身密度高且距离其他更高密度点较远的样本点作为聚类中心,再根据样本间的局部密度和距离进行聚类。一方面,虽然...密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法是一种新型的基于密度的聚类算法,通过选取自身密度高且距离其他更高密度点较远的样本点作为聚类中心,再根据样本间的局部密度和距离进行聚类。一方面,虽然DPC算法参数唯一、简单、高效,但是其截断距离的取值是按经验策略设定,而截断距离值选取不当会导致局部密度和距离计算错误;另一方面,聚类中心的选取采用人机交互模式,对聚类结果的主观影响较大。针对DPC算法的这些缺陷,目前的改进方向主要有3个:改进截断距离的取值方式、改进局部密度和距离的计算方式以及改进聚类中心的选取方式。通过这3个方向的改进,使得DPC过程自适应。本文对DPC算法的自适应密度峰值聚类算法的研究现状进行比较分析,对进一步的工作进行展望并给出今后的研究方向:将DPC算法与智能算法有机结合实现算法自适应,对于算法处理高维数据集的性能也需要进一步探索。展开更多
针对光滑孪生支持向量机(smooth twin support vector machines,STWSVM)采用的Sigmoid光滑函数逼近精度低的问题,提出一种基于Newton-Armijo优化的多项式光滑孪生支持向量机(polynomial smooth twin support vector machines based on N...针对光滑孪生支持向量机(smooth twin support vector machines,STWSVM)采用的Sigmoid光滑函数逼近精度低的问题,提出一种基于Newton-Armijo优化的多项式光滑孪生支持向量机(polynomial smooth twin support vector machines based on Newton-Armijo optimization,PSTWSVM-NA)。在PSTWSVM-NA中,引入正号函数,将孪生支持向量机的两个二次规划问题转化为两个不可微的无约束优化问题。随后,引入一族多项式光滑函数对不可微的无约束优化问题进行光滑逼近,并用收敛速度快的Newton-Armijo方法求解新模型。从理论上证明了PSTWSVM-NA模型具有任意阶光滑性,在人工数据和UCI数据集上的实验结果表明该算法具有较高的分类精度和较快的训练效率。展开更多
近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型...近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型,该模型结合了多头注意力(multiHead attention)和双向门循环单元(BiGRU)。模型使用多头注意力和双向门循环单元从空间和时间上处理网络攻击流量,有效缓解模型复杂性,同时增加模型表现力。此外,使用最大池化方法(maxpooling)来平衡训练速度和性能,不但可以提取序列的边缘特征,还能帮助扩大感受野,由于数据不平衡会影响模型性能表现,因此使用随机过采样(Random Over Sampling)方法来处理数据不平衡的问题。实验基于UNSW-NB15数据集和CIC-IDS2017数据集,并使用准确率(Accuracy)、精确率(Precision)、召回率(Recall)和f1分数作为评估指标。实验结果表明,模型性能优秀。展开更多
文摘密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法是一种新型的基于密度的聚类算法,通过选取自身密度高且距离其他更高密度点较远的样本点作为聚类中心,再根据样本间的局部密度和距离进行聚类。一方面,虽然DPC算法参数唯一、简单、高效,但是其截断距离的取值是按经验策略设定,而截断距离值选取不当会导致局部密度和距离计算错误;另一方面,聚类中心的选取采用人机交互模式,对聚类结果的主观影响较大。针对DPC算法的这些缺陷,目前的改进方向主要有3个:改进截断距离的取值方式、改进局部密度和距离的计算方式以及改进聚类中心的选取方式。通过这3个方向的改进,使得DPC过程自适应。本文对DPC算法的自适应密度峰值聚类算法的研究现状进行比较分析,对进一步的工作进行展望并给出今后的研究方向:将DPC算法与智能算法有机结合实现算法自适应,对于算法处理高维数据集的性能也需要进一步探索。
文摘针对光滑孪生支持向量机(smooth twin support vector machines,STWSVM)采用的Sigmoid光滑函数逼近精度低的问题,提出一种基于Newton-Armijo优化的多项式光滑孪生支持向量机(polynomial smooth twin support vector machines based on Newton-Armijo optimization,PSTWSVM-NA)。在PSTWSVM-NA中,引入正号函数,将孪生支持向量机的两个二次规划问题转化为两个不可微的无约束优化问题。随后,引入一族多项式光滑函数对不可微的无约束优化问题进行光滑逼近,并用收敛速度快的Newton-Armijo方法求解新模型。从理论上证明了PSTWSVM-NA模型具有任意阶光滑性,在人工数据和UCI数据集上的实验结果表明该算法具有较高的分类精度和较快的训练效率。
文摘近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型,该模型结合了多头注意力(multiHead attention)和双向门循环单元(BiGRU)。模型使用多头注意力和双向门循环单元从空间和时间上处理网络攻击流量,有效缓解模型复杂性,同时增加模型表现力。此外,使用最大池化方法(maxpooling)来平衡训练速度和性能,不但可以提取序列的边缘特征,还能帮助扩大感受野,由于数据不平衡会影响模型性能表现,因此使用随机过采样(Random Over Sampling)方法来处理数据不平衡的问题。实验基于UNSW-NB15数据集和CIC-IDS2017数据集,并使用准确率(Accuracy)、精确率(Precision)、召回率(Recall)和f1分数作为评估指标。实验结果表明,模型性能优秀。