期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
山地坡度自适应星载光子计数激光雷达点云去噪方法 被引量:6
1
作者 何光辉 王虹 +3 位作者 方强 张永安 赵丹露 张亚萍 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2023年第2期250-259,共10页
星载光子计数激光雷达在接收信号的过程中会产生大量噪声,并且在复杂的山区地形中信噪比低,极大地影响对植被点云信号的准确提取。为解决该问题,提出了一种基于山地坡度的密度聚类算法。通过分析点云数据的密度和森林目标地形特征,用最... 星载光子计数激光雷达在接收信号的过程中会产生大量噪声,并且在复杂的山区地形中信噪比低,极大地影响对植被点云信号的准确提取。为解决该问题,提出了一种基于山地坡度的密度聚类算法。通过分析点云数据的密度和森林目标地形特征,用最大密度中心搜索法进行粗去噪,基于点云数据计算坡度角以优化密度聚类,完成数据精去噪。通过对提取的森林区域信号进行分类,拟合植被冠层廓线和地表廓线,结果表明本算法提取植被光子信号的准确率较高,地面与冠层廓线的RMSE分别为0.3588 m和3.7449 m,更适用于植被遥感点云数据处理。 展开更多
关键词 光子计数激光雷达 点云去噪 密度聚类 森林遥感
下载PDF
基于深度学习的彩色全息图重建
2
作者 刘俊彤 桂进斌 +2 位作者 陈艾帅 马先栋 胡先飞 《激光与光电子学进展》 CSCD 北大核心 2024年第8期76-82,共7页
针对较大尺寸物体彩色全息图重建操作复杂、色彩融合不准确、重建时受零级影响等问题,提出一种基于深度学习的彩色全息图重建方法。采用改进的U-Net模型作为网络结构,使用混合实际拍摄和模拟生成的彩色离轴菲涅耳全息图频谱作为训练样本... 针对较大尺寸物体彩色全息图重建操作复杂、色彩融合不准确、重建时受零级影响等问题,提出一种基于深度学习的彩色全息图重建方法。采用改进的U-Net模型作为网络结构,使用混合实际拍摄和模拟生成的彩色离轴菲涅耳全息图频谱作为训练样本,实现对彩色全息图的准确重建。对模拟全息图和实际拍摄的数字全息图进行重建实验,结果表明,所提方法相较于传统方法,能够在保持重建图像高分辨率和颜色准确性的同时,具有更好的重建效果。研究结果可应用于大尺寸检测场彩色全息图的重建,为彩色全息检测及深度学习在光学成像领域中的应用提供有益的参考。 展开更多
关键词 数字全息 深度学习 彩色全息重建 全息频谱
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部