3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了...3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了其收敛性。同时,通过数值实验验证了新方法在计算花费方面优于中心预处理的Uzawa-Low方法。进一步地,还将新方法拓展到i×i块鞍点问题,提出了相应的GSOR类迭代框架,通过数值实验和数据分析,给出了选择较优i的初步建议。展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
文摘3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了其收敛性。同时,通过数值实验验证了新方法在计算花费方面优于中心预处理的Uzawa-Low方法。进一步地,还将新方法拓展到i×i块鞍点问题,提出了相应的GSOR类迭代框架,通过数值实验和数据分析,给出了选择较优i的初步建议。
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.