CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还...CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还是空白。本文从CTB密封策略、密封结构设计、密封组件选型、失效后果分析和用户工况设计验证展开研究,首次提出攻克行业内CTB密封设计难题的解决方案,加速CTB技术普及应用,推动全球新能源汽车产业电动化转型。展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
Nowadays,in order to expand the roof view to bring passengers closer to nature,more and more new energy vehicles are opting for canopy designs without sunshades.However,after removing traditional sunshades,new solutio...Nowadays,in order to expand the roof view to bring passengers closer to nature,more and more new energy vehicles are opting for canopy designs without sunshades.However,after removing traditional sunshades,new solutions must be sought to address issues such as heat insulation,glaring sunlight,and interior reflections from the roof glass during the summer months.This paper conducts an in-depth analysis of the technical advantages and shortcomings of sunshade-free canopy in terms of heat insulation and interior reflections during summer,from both theoretical analysis and experimental comparison perspectives,and proposes improvement strategies.The research results indicate that although the panoramic roof enhances the vehicle's interior view and technological appeal,it still has shortcomings in terms of heat insulation and the problem of interior reflections caused by direct sunlight.The proposed improvement strategies can effectively mitigate these issues,and offers consumers more comfortable and intelligent driving experiences.展开更多
为实现对圆柱尾流非定常速度场的精确测量,示踪粒子的跟随性与光学散射特性是基于时间解析PIV试验技术的关键问题。为此,选择Laskin-40粒子发生器并匹配粒径1 μm的DEHS作为示踪粒子,并使用热线风速仪专门测试示踪粒子频响特性。高频PI...为实现对圆柱尾流非定常速度场的精确测量,示踪粒子的跟随性与光学散射特性是基于时间解析PIV试验技术的关键问题。为此,选择Laskin-40粒子发生器并匹配粒径1 μm的DEHS作为示踪粒子,并使用热线风速仪专门测试示踪粒子频响特性。高频PIV设备采样频率为1000 Hz,将直径20 mm的金属圆柱尾缘至其后方7.5倍直径、圆柱两侧各3.3倍直径所围成的矩形绕流尾迹区域作为测试区域,重点研究来流风速20 m/s条件下、圆柱特征雷诺数Re = 2.67 × 104下的非定常流场。基于PIV获得的速度场数据,开展流场和频谱特性分析,得到了圆柱绕流尾迹中的瞬态流场特征和旋涡脱落的频率特性。基于时间解析PIV技术能够获得丰富的流场信息,可以准确地识别绕流尾迹中旋涡交替脱落和发展的时空演化过程,在非定常流场测量方面具有普遍推广意义。The tracking characteristics and light scattering properties of tracer particles are the crucial issues of time-resolved Particle Image Velocimetry (PIV) experiment technology for the accurate measurement of the unsteady velocity field in the wake of a cylinder. A Laskin-40 particle generator was chosen with 1-μm-diameter DEHS as the tracer particle, and a hot-wire anemometer was employed to assess its frequency response property. The high frequency PIV device featured a sampling rate of 1000 Hz, for which the test area is the rectangular wake flow region of 7.5 times the diameter of a 20 mm-diameter metal cylinder from its trailing edge and 3.3 times the diameter from both sides. The study focused on the unsteady flow fields at 20 m/s wind speed and the Reynolds number (Re) of 2.67 × 104 for the cylinder. By the flow field and frequency spectrum analysis based on the velocity field data acquired by PIV, the research gained insights into the transient characteristics of flow field and frequency property of vortex shedding in the wake of the cylinder. As the time-resolved PIV technology provides abundant flow field information that allows accurate identification of the vortex shedding and its spatial temporal development in the wake, it is worth spreading in unsteady flow field measurement.展开更多
文摘CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还是空白。本文从CTB密封策略、密封结构设计、密封组件选型、失效后果分析和用户工况设计验证展开研究,首次提出攻克行业内CTB密封设计难题的解决方案,加速CTB技术普及应用,推动全球新能源汽车产业电动化转型。
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
文摘Nowadays,in order to expand the roof view to bring passengers closer to nature,more and more new energy vehicles are opting for canopy designs without sunshades.However,after removing traditional sunshades,new solutions must be sought to address issues such as heat insulation,glaring sunlight,and interior reflections from the roof glass during the summer months.This paper conducts an in-depth analysis of the technical advantages and shortcomings of sunshade-free canopy in terms of heat insulation and interior reflections during summer,from both theoretical analysis and experimental comparison perspectives,and proposes improvement strategies.The research results indicate that although the panoramic roof enhances the vehicle's interior view and technological appeal,it still has shortcomings in terms of heat insulation and the problem of interior reflections caused by direct sunlight.The proposed improvement strategies can effectively mitigate these issues,and offers consumers more comfortable and intelligent driving experiences.
文摘为实现对圆柱尾流非定常速度场的精确测量,示踪粒子的跟随性与光学散射特性是基于时间解析PIV试验技术的关键问题。为此,选择Laskin-40粒子发生器并匹配粒径1 μm的DEHS作为示踪粒子,并使用热线风速仪专门测试示踪粒子频响特性。高频PIV设备采样频率为1000 Hz,将直径20 mm的金属圆柱尾缘至其后方7.5倍直径、圆柱两侧各3.3倍直径所围成的矩形绕流尾迹区域作为测试区域,重点研究来流风速20 m/s条件下、圆柱特征雷诺数Re = 2.67 × 104下的非定常流场。基于PIV获得的速度场数据,开展流场和频谱特性分析,得到了圆柱绕流尾迹中的瞬态流场特征和旋涡脱落的频率特性。基于时间解析PIV技术能够获得丰富的流场信息,可以准确地识别绕流尾迹中旋涡交替脱落和发展的时空演化过程,在非定常流场测量方面具有普遍推广意义。The tracking characteristics and light scattering properties of tracer particles are the crucial issues of time-resolved Particle Image Velocimetry (PIV) experiment technology for the accurate measurement of the unsteady velocity field in the wake of a cylinder. A Laskin-40 particle generator was chosen with 1-μm-diameter DEHS as the tracer particle, and a hot-wire anemometer was employed to assess its frequency response property. The high frequency PIV device featured a sampling rate of 1000 Hz, for which the test area is the rectangular wake flow region of 7.5 times the diameter of a 20 mm-diameter metal cylinder from its trailing edge and 3.3 times the diameter from both sides. The study focused on the unsteady flow fields at 20 m/s wind speed and the Reynolds number (Re) of 2.67 × 104 for the cylinder. By the flow field and frequency spectrum analysis based on the velocity field data acquired by PIV, the research gained insights into the transient characteristics of flow field and frequency property of vortex shedding in the wake of the cylinder. As the time-resolved PIV technology provides abundant flow field information that allows accurate identification of the vortex shedding and its spatial temporal development in the wake, it is worth spreading in unsteady flow field measurement.