期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
面向小目标检测的机器视觉实验项目改进设计 被引量:3
1
作者 杨哲 卜子渝 《实验技术与管理》 CAS 北大核心 2022年第9期64-70,共7页
目标检测是计算机视觉实践课程中重要的实验项目,尤其是小目标检测是该领域的难点。针对实验中常用的SSD模型存在的小目标检测能力不足等问题,提出采用特征图融合的方法改进特征金字塔的结构。在不改变特征图通道数的前提下,对底层特征... 目标检测是计算机视觉实践课程中重要的实验项目,尤其是小目标检测是该领域的难点。针对实验中常用的SSD模型存在的小目标检测能力不足等问题,提出采用特征图融合的方法改进特征金字塔的结构。在不改变特征图通道数的前提下,对底层特征图通过上采样和卷积操作,增强细节信息的表征能力,构成新的特征金字塔进行训练和预测。在VOC数据集上的测试结果表明:相较于SSD模型,改进模型对不同大小目标的检测精度都有提升,小目标的检测精度提升一倍以上,并且改善了SSD模型存在的漏检和误检问题。通过模型的优化和对比,加深了学生对目标检测原理的理解,提高了学生解决实际问题的能力,促进了计算机视觉实践课程的建设。 展开更多
关键词 计算机视觉 实验设计 目标检测 特征融合
下载PDF
融合残差网络的自监督社交推荐算法 被引量:1
2
作者 王玉洁 杨哲 《计算机科学与探索》 CSCD 北大核心 2024年第12期3175-3188,共14页
基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果。但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题。提出了... 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果。但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题。提出了一种融合残差网络的自监督社交推荐算法。采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部的嵌入表示,进而缓解噪声影响。该算法在Ciao、Epinions和Yelp三个数据集上与NGCF、LightGCN、MHCN等基线模型进行对比实验。在Ciao数据集上,Recall@10提升了17.1%~48.5%,NDCG@10提升了1.4%~37.9%;在Epinions数据集上,Recall@10提升了8.3%~56.2%,NDCG@10提升了3.7%~29.8%;在Yelp数据集上,Recall@10提升了9.1%~53.3%,NDCG@10提升了11.2%~66.6%。实验结果表明,该算法相较于基准模型有良好的推荐性能。 展开更多
关键词 社交网络 推荐系统 图卷积神经网络 超图 自监督学习
下载PDF
基于EfficientNet的无锚框目标检测模型
3
作者 卜子渝 杨哲 刘纯平 《计算机技术与发展》 2024年第1期37-43,共7页
目标检测是计算机视觉的热门研究方向之一,包含分类和定位两个任务。针对单阶段目标检测模型普遍存在的两个问题:训练时正负样本的不均衡以及锚框的设置需要人工干预,提出一种基于EfficientNet的无锚框目标检测模型(Anchor-free Efficie... 目标检测是计算机视觉的热门研究方向之一,包含分类和定位两个任务。针对单阶段目标检测模型普遍存在的两个问题:训练时正负样本的不均衡以及锚框的设置需要人工干预,提出一种基于EfficientNet的无锚框目标检测模型(Anchor-free Efficientnet-based Object Detector,AEOD)。AEOD先筛选出落在目标框中的特征点,再根据特征点所作的预测计算代价矩阵,在训练时基于代价矩阵为目标动态分配正负样本,从而达到平衡二者数量的目的。此模型通过特征图中的特征点直接预测目标的位置和形状,不仅省去了人工设置锚框的环节,还提高了可检出目标的数量。此外,可缩放的EfficientNet进一步提高了模型的泛化能力,使之可以接收多尺度的输入。在PASCAL VOC07+12数据集中,AEOD最高可以获得91.3%的平均精度(mAP),检测速度达到32.1 FPS,较其他主流的目标检测模型有显著提升。 展开更多
关键词 深度学习 计算机视觉 目标检测 正负样本分配算法 无锚框
下载PDF
一种基于博弈论的移动边缘计算资源分配策略 被引量:4
4
作者 陈祎鹏 杨哲 +1 位作者 谷飞 赵雷 《计算机科学》 CSCD 北大核心 2023年第2期32-41,共10页
现有的对移动边缘计算资源分配策略问题的研究,较多的是针对时延和能耗因素进行优化,考虑边缘服务器的收益问题的相对较少,而在考虑边缘服务器收益时,许多研究忽略了对任务完成时延的优化。因此,提出了一种基于博弈论的双向更新策略(TUS... 现有的对移动边缘计算资源分配策略问题的研究,较多的是针对时延和能耗因素进行优化,考虑边缘服务器的收益问题的相对较少,而在考虑边缘服务器收益时,许多研究忽略了对任务完成时延的优化。因此,提出了一种基于博弈论的双向更新策略(TUSGT)。TUSGT在边缘服务器侧将其之间的任务竞争关系转化为一个非合作博弈问题,采用基于势博弈的联合优化策略,允许边缘服务器以最大化其自身收益为目的来确定任务选择偏好。在移动设备侧使用在线学习中的EWA算法进行参数更新,从全局角度影响边缘服务器的任务选择偏好,提高总体任务完成率。仿真实验结果表明,TUSGT与BGTA、MILP、贪婪策略、随机策略、理想策略相比,任务完成率最多提高30%,边缘服务器平均收益最多提高65%。 展开更多
关键词 移动边缘计算 资源分配 博弈论 双向更新 势博弈
下载PDF
英汉篇章结构分析研究综述 被引量:1
5
作者 蒋峰 范亚鑫 +2 位作者 褚晓敏 李培峰 朱巧明 《软件学报》 EI CSCD 北大核心 2023年第9期4167-4194,共28页
篇章结构分析旨在理解文章的整体结构及其各部分之间的语义联系.作为自然语言处理的研究热点,近年来篇章结构分析研究发展迅速.首先总结英语和汉语中篇章结构分析理论,然后介绍相关篇章语料库及其计算模型的研究.在此基础上,梳理了当前... 篇章结构分析旨在理解文章的整体结构及其各部分之间的语义联系.作为自然语言处理的研究热点,近年来篇章结构分析研究发展迅速.首先总结英语和汉语中篇章结构分析理论,然后介绍相关篇章语料库及其计算模型的研究.在此基础上,梳理了当前英语、汉语中篇章结构分析的相关工作脉络,构建了篇章结构分析研究框架,归纳总结出当前研究的趋势和热点.然后,简要介绍篇章结构在下游任务中的应用.最后,指出当前汉语篇章结构分析存在的问题与挑战,为今后的研究提供指导和帮助. 展开更多
关键词 自然语言处理 篇章分析 篇章结构 篇章关系 篇章语料库
下载PDF
多通道Laplacian矩阵融合的超图直推学习模型 被引量:2
6
作者 徐良奎 杨哲 +1 位作者 吴国荣 赵雷 《小型微型计算机系统》 CSCD 北大核心 2023年第11期2566-2575,共10页
超图直推学习模型是机器学习领域研究热点.超图模型的性能取决于构造的超图结构及其Laplacian矩阵的质量.现有超图模型基于单一超图结构,信息表达能力有限.本文提出超图结构扩张法,将异构超图的关联矩阵和权重矩阵拼接,融合更多的顶点... 超图直推学习模型是机器学习领域研究热点.超图模型的性能取决于构造的超图结构及其Laplacian矩阵的质量.现有超图模型基于单一超图结构,信息表达能力有限.本文提出超图结构扩张法,将异构超图的关联矩阵和权重矩阵拼接,融合更多的顶点间全局高阶信息,增加Markov随机游走的扩散范围.但这会导致矩阵维度高,计算开销大.因此进一步提出多通道Laplacian矩阵融合法,用多个通道计算异构超图结构各自的Laplacian矩阵,再加权累加.在4个数据集上的实验表明,两种方法都能提高超图直推学习模型的分类性能,且Laplacian矩阵融合法比结构扩张法平均节约40%左右时间成本,F1指标最高提升8.4%. 展开更多
关键词 超图直推学习 超图结构扩张 超图Laplacian矩阵 多通道Laplacian矩阵融合
下载PDF
无监督的领域自适应机器阅读理解方法 被引量:1
7
作者 刘皓 洪宇 朱巧明 《计算机学报》 EI CAS CSCD 北大核心 2022年第10期2133-2150,共18页
受益于面向大规模语言学资源的深度学习,预训练语言模型有着较强的语义表示学习能力.其能够借助特定任务场景下的迁移学习,在优化模型性能方面提供重要的支持.目前,预训练语言模型已被引入机器阅读理解研究领域,并展现了较好的优化能力... 受益于面向大规模语言学资源的深度学习,预训练语言模型有着较强的语义表示学习能力.其能够借助特定任务场景下的迁移学习,在优化模型性能方面提供重要的支持.目前,预训练语言模型已被引入机器阅读理解研究领域,并展现了较好的优化能力.然而,针对特定领域的数据,微调后的预训练模型仍存在领域适应性问题,即无法解决未知领域中新颖的语言现象.为此,本文提出了一种融合迁移自训练和多任务学习机制的无监督领域自适应模型.具体而言,本文结合生成式阅读理解网络和掩码预测机制形成了多任务学习框架,并利用该框架实现跨领域(源领域至目标领域)的无监督模型迁移技术.此外,本文设计了文本规范化和迁移自训练模式,以此促进目标领域的数据分布适应源领域的数据分布,从而提高模型迁移学习的质量.本文将TweetQA作为目标领域数据集,将SQuAD、CoQA和NarrativeQA作为源领域数据集进行实验.实验证明,本文所提方法相较于基线模型有显著提升,在BLEU-1、METEOR和ROUGE-L指标上分别提升了至少2.5、2.7和2.0个百分点,验证了其优化领域适应性的能力. 展开更多
关键词 无监督领域自适应 迁移自训练 多任务学习 生成式阅读理解 掩码预测
下载PDF
基于超图神经网络的恶意流量分类模型 被引量:2
8
作者 赵文博 马紫彤 杨哲 《网络与信息安全学报》 2023年第5期166-177,共12页
随着网络的普及和依赖程度的不断增加,恶意流量的泛滥已经成为网络安全领域的严重挑战。在这个数字时代,网络攻击者不断寻找新的方式来侵入系统、窃取数据和破坏网络服务。开发更有效的入侵检测系统,及时发现并应对恶意流量,可以应对网... 随着网络的普及和依赖程度的不断增加,恶意流量的泛滥已经成为网络安全领域的严重挑战。在这个数字时代,网络攻击者不断寻找新的方式来侵入系统、窃取数据和破坏网络服务。开发更有效的入侵检测系统,及时发现并应对恶意流量,可以应对网络攻击的持续威胁,极大地减少网络攻击带来的损失。然而现有的恶意流量分类方法存在一些限制,其中之一是过度依赖对数据特征的选择。为了提高恶意流量分类的效果,提出了一种创新的方法,即基于超图神经网络的恶意流量分类模型。这一模型的核心思想是将流量数据表示为超图结构,并利用超图神经网络(HGNN,hypergraph neural network)来捕获流量的空间特征。HGNN能够更全面地考虑流量数据之间的关系,从而更准确地表征恶意流量的特征。此外,为了处理流量数据的时间特征,引入了循环神经网络(RNN,recurrent neural network),进一步提高了分类模型的性能。最终,提取的时空特征被用于进行恶意流量分类,从而帮助检测网络中的潜在威胁。通过一系列消融实验,验证了HGNN+RNN模型的有效性,证明其能够高效提取流量的时空特征,从而改善了恶意流量的分类性能。在3个广泛使用的开源数据集,即NSL-KDD、UNSW-NB15和CIC-IDS-2017上,模型取得了卓越的分类准确率,分别达到了94%、95.6%和99.08%。这些结果表明,基于超图神经网络的恶意流量分类模型在提高网络安全水平方面具有潜在的重要意义,有望帮助网络安全领域更好地应对不断演变的网络威胁。 展开更多
关键词 恶意流量 网络攻击 超图神经网络 循环神经网络
下载PDF
基于时空注意力机制的基坑位移预测方法
9
作者 王玉立 杨昌松 +2 位作者 邱劲 韦俊 吴宏杰 《计算机与现代化》 2023年第5期39-45,共7页
基坑安全管理是大型建筑基坑施工的关键内容,基坑结构位移预测是预防基坑支护事故的重要手段。但是由于基坑局部基坑位移成因复杂,现有的支持向量回归(SVR)、随机森林(RF)方法忽略了基坑位移随空间位移局部减弱、随时间局部位移加快增... 基坑安全管理是大型建筑基坑施工的关键内容,基坑结构位移预测是预防基坑支护事故的重要手段。但是由于基坑局部基坑位移成因复杂,现有的支持向量回归(SVR)、随机森林(RF)方法忽略了基坑位移随空间位移局部减弱、随时间局部位移加快增长的特点,导致预测精度不高。因此,本文提出一种融合时空注意力机制的GA-BP神经网络(A-GABP)方法,通过时空特征准确表示基坑位移预测的时空维度及其特征相关性,提高基坑位移预测的有效性。最后,本文以苏州市某大型工程为实例,对基坑的水平与垂直位移监测数据进行模型训练与评估,按时域特征、空域特征、多阶时域空域特征进行量化分析与研究,并与现有方法进行比较。实验结果表明,本文方法的拟合指数比其他几种方法分别提高29.19%与41.25%,多阶时空域特征相较于单独的时间域或空间域特征分别提高3.08%与1.83%。 展开更多
关键词 时空注意力机制 基坑位移预测 多时域空域特征 BP神经网络
下载PDF
基于注意力机制的危房等级预测方法研究
10
作者 杨昌松 邱劲 +4 位作者 韦俊 胡中天 王玉立 晏俊 吴宏杰 《苏州科技大学学报(工程技术版)》 2022年第4期62-67,73,共7页
危房等级评估是城市既有建筑管理的重要手段,等级评估的准确性直接影响管理部门的防护措施。错误的等级评估有可能造成生命与财产的重大损失。现有的预测方法大都采用循环神经网络(Recurrent Neural Network,RNN)和支持向量机(Support V... 危房等级评估是城市既有建筑管理的重要手段,等级评估的准确性直接影响管理部门的防护措施。错误的等级评估有可能造成生命与财产的重大损失。现有的预测方法大都采用循环神经网络(Recurrent Neural Network,RNN)和支持向量机(Support Vector Machines, SVM)等模型。由于建筑沉降与局部结构位移的诱因复杂,大大增加了危房评估的难度,致使现有的预测方法精度不高。针对这种出现的问题,提出一种结合梯度下降算法(Adagrad, AD)和注意力机制的长短期记忆神经网络(Adagrad and Attention Based Long Short-Term Memory, AD-AB-LSTM)的危房评估方法研究,通过对危房沉降与水平位移进行了有效预测并对之进行等级预测(直接与间接),此方法对危房沉降位移进行建模并有效预测。依托工程实例数据,无锡东北塘社区危房的水平与垂直位移监测数据进行模型训练与评估,对数据进行了量化分析与研究,并将此方法与长短期记忆神经网络(Long Short Term Memory, LSTM)、循环神经网络实验结果进行比较。实验结果表明:此方法较长短期记忆神经网络方法和循环神经网络方法以及支持向量机效果显著提高15.29%和52.73%和27.59%。 展开更多
关键词 危房等级预测 随机梯度下降算法 注意力机制 建筑结构位移
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部