针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散...针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散模型的生成条件,赋予扩散模型预报的能力;其次,设计了一个新的平衡损失函数,同时保护了扩散模型的生成能力和时空信息捕捉模块对时空信息的捕捉能力;最后,基于美国国家环境预报中心的再分析数据进行预报,与现有的深度学习方法相比,所提模型预报结果的质量在均方误差(mean square error,MSE)上降低了17.3%,在均方根误差(root mean square error,RMSE)上降低了9.14%,在峰值信噪比(peak signal to noise ratio,PSNR)上提升了5.1%。改进的扩散模型能有效地捕捉时空依赖的关系,有效地进行时空序列预测,效果优于其他对比方法。展开更多
DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目...DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目标上看,这些工作大体上可分为减少冗余计算和并行化两大类;就具体加速手段而言,可分为6个主要类别:基于分布式、基于采样化、基于近似模糊、基于快速近邻、基于空间划分以及基于GPU加速技术.根据该分类,对现有工作进行了深入梳理与交叉比较,发现采用多重技术的融合加速算法优于单一加速技术;近似模糊化、并行化与分布式是当前最有效的手段;高维数据仍然难以应对.此外,对快速化DBSCAN算法在多个领域中的应用进行了跟踪报告.最后,对本领域未来的方向进行了展望.展开更多
文摘针对传统数值预报模式计算时间长和计算资源消耗大的问题,以及现有深度学习预报方法在温度预报结果上不精确,且预测结果模糊的问题,提出了一个新的温度预报模型。首先,设计了一个时空信息捕捉模块,将该模块捕获的长期依赖信息,作为扩散模型的生成条件,赋予扩散模型预报的能力;其次,设计了一个新的平衡损失函数,同时保护了扩散模型的生成能力和时空信息捕捉模块对时空信息的捕捉能力;最后,基于美国国家环境预报中心的再分析数据进行预报,与现有的深度学习方法相比,所提模型预报结果的质量在均方误差(mean square error,MSE)上降低了17.3%,在均方根误差(root mean square error,RMSE)上降低了9.14%,在峰值信噪比(peak signal to noise ratio,PSNR)上提升了5.1%。改进的扩散模型能有效地捕捉时空依赖的关系,有效地进行时空序列预测,效果优于其他对比方法。
文摘DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目标上看,这些工作大体上可分为减少冗余计算和并行化两大类;就具体加速手段而言,可分为6个主要类别:基于分布式、基于采样化、基于近似模糊、基于快速近邻、基于空间划分以及基于GPU加速技术.根据该分类,对现有工作进行了深入梳理与交叉比较,发现采用多重技术的融合加速算法优于单一加速技术;近似模糊化、并行化与分布式是当前最有效的手段;高维数据仍然难以应对.此外,对快速化DBSCAN算法在多个领域中的应用进行了跟踪报告.最后,对本领域未来的方向进行了展望.
文摘连续控制问题一直是强化学习研究的一个重要方向.近些年深度学习的发展以及确定性策略梯度(deterministic policy gradients, DPG)算法的提出,为解决连续控制问题提供了很多好的思路.这类方法大多在动作空间中加入外部噪声源进行探索,但是它们在一些连续控制任务中的表现并不是很好.为更好地解决探索问题,提出了一种基于经验指导的深度确定性多行动者评论家算法(experience-guided deep deterministic actor-critic with multi-actor, EGDDAC-MA),该算法不需要外部探索噪声,而是从自身优秀经验中学习得到一个指导网络,对动作选择和值函数的更新进行指导.此外,为了缓解网络学习的波动性,算法使用多行动者评论家模型,模型中的多个行动者网络之间互不干扰,各自执行情节的不同阶段.实验表明:相比于DDPG,TRPO和PPO算法,EGDDAC-MA算法在GYM仿真平台中的大多数连续任务中有更好的表现.